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Chapter 1

Summary

1.1 Summary
The goal of this part is to give a summary of what will be developed in the next chapters. In
brief, we are interested in maps f : M −→M ′ between Riemannian manifolds (that to simplify,
are supposed to be compact) that are critical points of the energy functional

E(f) = 1
2

∫
M
|∇f |2dV.

By taking first order variation of E, these are maps whose tension field τ(f) vanishes.

1.1.1 Deformation using nonlinear heat equation.
The approach of [ES64] is to prove that, if the target space is negatively curved, then any
smooth map f0 : M −→ M ′ can be deformed to a harmonic map using the gradient descent
equation: 

dft
dt

= τ(ft)
f
∣∣∣
t=0

= f0
(1.1)

We will prove that if M ′ is negatively curved then this PDE admits a globally defined smooth
solution ft and that f∞ := limt→∞ ft in C∞ is a harmonic map.

The resolution of (1.1) can be organised in 3 steps:

1. Find the global equation. We will find a global frame of M ′ and express f in this frame,
so that instead of solving for a map, we will have to solve for functions.

2. Study linear PDEs on manifolds. The equation, expressed in local coordinates, is a
nonlinear heat equation, i.e. other than a heat operator, it has a quadratic term. Short-
time existence and regularity for (1.1) follows from standard results of parabolic equation.
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1. Summary

3. Prove long-time existence. In order to use continuity method, we will have to prove that
W k,p-norms of the solution ft do not explode. This will be established first in the case
W 2,2 using physical quantities, namely the potential energy E and the kinetic energy
K. The general case is proved from the W 2,2 estimate using Gårding’s inequality and
Comparison theorem for parabolic equation.

The hypothesis of negative curvature is only used to establish the energy estimates. During
deformation, the rate of potential energy can be calculated as:

de(ft)
dt

= −∆e(ft)− |β(ft)|2 − 〈Ric(M)∇vft,∇vft〉+ 〈Riem(M ′)(∇vft,∇wft)∇vft,∇wft〉

and the kinetic energy as:

dk(ft)
dt

= −∆k(ft)−
∣∣∣∣∣∇∂ft∂t

∣∣∣∣∣
2

+
〈

Riem(M ′)(∇vft,
∂ft
∂t

)∇vft,
∂ft
∂t

〉

Therefore if all sectional curvatures of M ′ are negative, these rates can be controlled and the
energies are guaranteed not to explode.

1.1.2 Existence using Morse-Palais-Smale theory.
We also give a less detailed review of the work by Sacks and Uhlenbeck [SU81]. This approach
uses an approximating family Eα of the energy functional E whose critical functions in W 1,2α

can be easily proved to exist using Morse-Palais-Smale theory. One then tries to prove that the
critical sequence C1-converges to a nontrivial limit.

As a concrete result, the authors proved, using an extension theorem for harmonic maps on
surface and a suitable covering of M by small discs on which the energy E is sufficiently small,
that if the fundamental group πk(M ′) is nontrivial for a certain k ≥ 2, or equivalently, if the
universal covering M̃ ′ of M ′ is not contractible, then there exists a nontrivial harmonic map
from S2 to M ′.
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Chapter 2

Harmonic maps of Riemannian
manifolds

2.1 Harmonic maps

2.1.1 Variational approach: energy integral and tension field
Notation. Let M,M ′,M ′′ be Riemannian manifolds of dimension n, n′ and n′′ respectively.
We will use indices i, j, k, . . . , α, β, γ, . . . , a, b, c to denote local coordinates of M,M ′,M ′′. Let
f : M −→M ′, f ′ : M ′ −→M ′′ be a smooth maps, one denotes

fαi = ∂fα

∂xi
, fαij = ∂2fα

∂xi∂xj
− Γkijfαk

so that ∇h = hidx
i and ∇(∇h) = hijdx

i ⊗ dxj and −∆h = Tr∇(∇h) = gijhij for any smooth
function h.

Definition 1. The energy desity of f at p ∈ m is defined by

e(f)(p) = 1
2〈g, f

∗g〉p = 1
2g

ijfαi f
β
j g
′
αβ

and the energy functional of f is

E(f) =
∫
M
e(f)dV = 1

2

∫
M
gijfαi f

β
j g
′
αβ| det(gij)|

1
2dx1 ∧ · · · ∧ dxn

We recall that the inner product between 2 tensors of type (p, q) S = S
i1...ip
j1...jq , T = T

k1...kp
l1...lq is∏

m,n gimkmg
jnlmS

i1...ip
j1...jqT

k1...kp
l1...lq

Remark 1. The energy density is non-negative at every point. Hence E(f) = 0 if and only if
e(f) = 0 at all points if and only if f is constant.
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2. Harmonic maps of Riemannian manifolds

Definition 2. Let σ be a symmetric function of n variables and α be a symmetric (0,2) tensor
field, one can define the σ-energy desity of α at P ∈ M to be σ(β1, . . . , βn)(P ) where βi are
eigenvalues of the linear operator (gikαij)k,j. The σ-energy of α is Iσ(α) :=

∫
M σ(α)dV

Take α = f ∗g′, one calls σ(α) the σ-energy density of f and Iσ(α) the σ-energy of f .

Example 1. For example, the energy functional E(f) is Iσ1
2

(f). V (f) := I
σ

1/2
n

(f) is called the
volume of f .

Lemma 1 (variation of the energy). Let ft : M −→ M ′ be a smooth family of smooth maps
between Riemannian manifolds for t ∈ (t0, t1). Then

d

dt
E(ft) = −

∫
M

(
−∆fγt + gijΓ′γαβfαt,if

β
t,j

)
g′γν

∂f νt
∂t

dV, ∀t ∈ (t0, t1)

Proof. One has

dE

dt
(ft) = 1

2

∫ [
2gijfαi

∂2fβt
∂xj∂t

g′αβ + gijfαi f
β
j

∂g′αβ
∂yν

df νt
dt

]
dV (g)

= 1
2

∫ [
−
(
2gijfαi g′αβ

)
j

dfβt
dt

+ gijfαi f
β
j

∂g′αβ
∂yν

df νt
dt

]
dV (g)

The first term is

−
(
2gijfαi g′αβ

)
j

= −2gijfαij
dfβ

dt
g′αβ − 2gijfαi

dfβ

dt

∂g′αβ
∂yν

f νj

= 2∆fαg′αβ
dfβt
dt
− 2gijfαi f

β
j

∂g′αν
∂yβ

df νt
dt

It remains to check that
−2∂g

′
αν

∂yβ
+
∂g′αβ
∂yν

= −2Γ′γαβg′γν

when we are allowed to permute α, β, which is routine.

Definition 3. 1. A vector field along f : M −→ M ′ is a smooth application v : M −→
TM ′ such that π ◦ v = f where π : TM ′ −→ M ′ is the canonical projection. In other
words, it is the association of each point P ∈M a tangent vector at f(P )

2. The tension field of f is the vector field along f defined by

τ(f)γ := −∆fγ + gijΓ′γαβfαi f
β
j

By the Lemma 1, τ(f) is the unique vector field along f such that d
dt
E(ft) = −

∫
M〈τ(f), dft

dt
〉.

In particular, if ft is the variation of f along a vector field v along f , i.e. ft(P ) =
expf(P )(tv(P )) then d

dt
E(ft) = −〈τ(f), v〉.
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2.1. Harmonic maps

3. f : M −→ M ′ is called harmonic if τ(f) = 0, or equivalently if f is a critical point of
E.

In normal coordinates of M at P and M ′ at f(P ), the tension field of f is given by

τ γ(f)(P ) =
∑
i

∂2fγ

∂(xi)2 (P )

Remark 2. 1. If M ′ is flat, i.e. R′αβγδ = 0 then τ(f)γ = −∆fγ is linear in f . We refind
the definition of harmonic function.

2. Since τ(f) depends locally on f , isometries and covering maps are harmonic.

Proposition 2 (Holomorphicity implies harmonicity). Holomorphic maps between Kahler man-
ifolds are harmonic.

Proof. We recall that exponential function expP : TPM −→ M ′ on a Kahler manifold M is
holomorphic for any P ∈M . In fact, let v ∈ TPM and δv ∈ Tv(TPM) be a tangent vector at v
and denote abusively by J the complex structure of the complex vector space TPM and that
of M , one needs to see that

D expP (v).Jδv = J(expP (v))D expP (v).δv (2.1)

In fact, let Y1, Y2 be Jacobi fields along U(t) = expP (tv) the geodesics of M starting at P in
direction v with Y1(0) = Y2(0) = 0, Ẏ1(0) = δv, Ẏ2(0) = Jδv then the LHS of (2.1) is Y2(1), and
the RHS is J(U(1))Y1(1). Then one can see that Y2(t) − J(U(t))Y1(t) = 0 for every t ∈ [0, 1]
since it is true at t = 0 and the derivative with respect to t vanishes as ∇U̇J = 0.

Therefore, at a point P of a Kahler manifold M , there exist holomorphic coordinates zj =
xj + iyj of M in a neighborhood of P such that {xj, yj : j = 1, n/2} are normal coordinates
centered in P . Using such coordinates for P ∈M and f(P ) ∈M ′, one has ∆fγ = 0 since fγ is
holomorphic and Γ′γαβ(P ) = 0 by normality, it follows that τ(f) = 0 at every point P ∈M .

2.1.2 Formulation using connection on vector bundle
Setup and notation. Let E be a metric vector bundle over a Riemannian manifold M , i.e.
each fiber of E is equiped with an inner product that we denote by (g′αβ). The metric of M is
denoted by (gij). Let n and m be the dimension of M of the fiber.

Covariant derivatives and exterior derivatives. We recall that a covariant derivative
or a connection ∇̃ of E is uniquely determined in local coordinates by an m ×m matrix A
of 1-forms, in other words, it is an 1-form on M with value in HomM(E,E) which depends on
the local frame of E (i.e. A is not a tensor with value in E). A is called the connection form
of ∇̃. Locally

∇̃X(sαẽα) = (∇Xs
α)ẽα + Aαβ(X)sβ ẽα.
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2. Harmonic maps of Riemannian manifolds

When one prefers to work with forms rather than tensors with value in E, one uses an
exterior derivative, a map D : Ap(M,E) −→ Ap+1(M,E) which turns an p-form with value
in E to an p+ 1-form with value in E. Locally

D(sαẽα) = (dsα)ẽα + Aαβ ∧ sβ ẽα.

and
D2(sαẽα) = (dA+ A ∧ A) ∧ s.

One notes Θ := dA+A∧A, which is an m×m matrix of 2-forms ofM . Unlike A, Θ, seen as an
2-form with value in HomM(E,E) does not depend on the local frame of E, i.e. Θ transforms
as a (0,2) tensor with value in E, called the curvature form.

The fibrewise metric structure of E and the metric tensor ofM give rise to a pointwise inner
product of (p, q) tensors of M with value in E, in particular a pointwise inner product (s, s′) 7→
s · s′ from Ap(M,E) × Ap(M,E) to C∞(M). Integrated over M , the pointwise inner product
gives rise to a global inner product

∫
M〈·, ·〉 of Ap(M,E). One denotes by δ : Ap+1(M,E) −→

Ap(M,E) the adjoint operator of D : Ap(M,E) −→ Ap+1(M,E) with respect to this inner
product, i.e.

∫
M〈Ds, s′〉Ap+1(M,E) =

∫
M〈s, δs′〉Ap(M,E) for all s ∈ Ap(M,E), s′ ∈ Ap+1(M,E).

Laplacian operator and harmonic forms. The Hodge Laplacian is defined as a endo-
morphism of Ap(M,E) given by

∆̃ = Dδ + δD

and a form s ∈ Ap(M,E) is called harmonic if ∆̃s = 0. Since the Laplacian operator represents
the Dirichlet integral, i.e. ∫

M
〈Ds,Ds′〉+

∫
M
〈δs, δs′〉 =

∫
M
〈∆̃s, s′〉,

one has ∆̃s = 0 if and only if Ds = δs = 0.

Riemannian connected bundle. The metric vector bundle E overM is called aRiemannian-
connected bundle if it is equipped with a connection ∇̃ under which the metric g′ of E is
parallel, i.e. ∇̃g′ = 0, in other words, the matrix A in an orthonormal frame is anti-symmetric:
A+ tA = 0. Unless explicitly indicated, we always suppose that our metric vector bundle E is
Riemannian-connected and the metric g′ is parallel to the connection being used.

Example 2. The case of our interest is when we have a smooth map f : M −→ M ′ and
E = f ∗TM ′ is a metric vector bundle over M under the metric g′ induced from M ′. Taking
the connection ∇̃ to be the Levi-Civita connection ∇′ on M ′, meaning

∇̃Xs = ∇′f∗Xs,

for any vector field s along f , one can see that E is a Riemannian-connected bundle over M .
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2.1. Harmonic maps

Lemma 3. Let E be a Riemannian-connected bundle and s = sαi dx
iẽα ∈ A1(M,E), one has

1. δs = (δs)αẽα ∈ A0(M,E) where

(δs)α = −gij
(
∇is

α
j + Aαβis

β
j

)
,

2. ∆s = (∆s)idxi where (∆s)i is an m×m matrix given by

(∆s)i = −∇̃k∇̃ksi +
t(

Θh
i − Richi

)
sh

where:

• the indices i, h, k correspond to local coordinates of M ,

• Θh
i is the curvature form of ∇̃ with its indices raised by the metric g of M ,

• Richi = Richi Im is the Ricci curvature tensor of (M, g) with indices raised by the
metric g, multiplied by the identity m×m matrix,

• ∇̃k = ghk∇̃h.

3. With s·s′ denoting the pointwise inner product of A1(M,E) and 〈·, ·〉E denoting the metric
g′ of E, one has

− 1
2∆(s · s) = s ·∆s− 〈∇̃isk, ∇̃isk〉E −

〈t(
Θh
i − Richi

)
sh, s

i
〉
E

(2.2)

where the superscript i, h are raised by the metric g.

Proof. Computational in nature.

Remark 3. 1. We note by Q(s) the last term of (2.2), then Q is a (2,0) tensor on M with
value in E∗ ⊗ E∗ where E∗ is the dualised bundle of E. In practice, Q is an mn ×mn
matrix with coefficients

Qhi
αβ = ghkgij

[(
g′αγΘ

γ
β

)
kj
− g′αβRickj

]
.

2. Since
∫
M ∆(s · s)dV = 0, if s is harmonic, one has∫

M
Q(s)dV = −

∫
M
〈∇̃isk, ∇̃isk〉EdV

= −
∫
M
‖∇is

α
kdx

i ⊗ dxk ⊗ ẽα‖2
A2(M,E)dV ≤ 0

(2.3)
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2. Harmonic maps of Riemannian manifolds

2.1.3 The case of E = f ∗TM ′

Energy functional and tension field

Our interest will be the case of Example 2 where E = f ∗TM ′ for a smooth map f : M −→M ′

of Riemannian manifolds is a Riemannian-connected bundle over M with the connection ∇̃
given by the Levi-Civita connection of M ′.

In this section, the tangent map Tf : TM −→ TM ′ can be interpreted as a form f∗ in
A1(M,E). The energy functional can be rewritten as

E(f) = 1
2

∫
M
fαi f

β
j g

ijg′αβdV = 1
2〈f∗, f∗〉A

1M,E.

Proposition 4. Let f : M −→M ′ and E = f ∗TM ′ be the Riemannian-connected bundle over
M . Then:

1. Aβα = Γ′βγαf
γ
i dx

i where Γ′βγ,α are Christoffel symbols of (M ′, g′).

2. Df∗ = 0 where f∗ is considered as an element of A1(M,E). Hence ∆̃f∗ = Dδf∗.

3. The tension field of f is τ(f) = −δf∗.

Proof. 1. We will use the fact that ∇̃g′ = 0. Given two section s = sαẽα, t = tβ ẽβ of E,
expanding ∇i(s · t) = (∇̃is) · t+ s · ∇̃it, one has

sαtβ
∂g′αβ
∂xi

= sαtβ
(
Aγαig

′
γβ + Aγβig

′
αγ

)
Taking s, t to be of small support, α = β and substituing Aγαi = Γ′νγαf

γ
i , one obtains the

first statement.

2. By direct computation:

Df∗ =
(
∂2fα

∂xi∂xj
+ Γ′αγβf

γ
i f

β
j

)
dxj ∧ dxi ⊗ ẽα = 0

since it is the product of a symmetric quantity in (i, j) and an anti-symmetric one.

3. Using the first part of Lemma 3 for s = f∗ = fαi dx
i⊗ẽα, one has δf∗ = −gij

(
∇i∇jf

γ + Γ′γαβfαi f
β
j

)
ẽγ =

−τ(f)

It follows immediately that

Corollary 4.1. f : M −→ M ′ is a harmonic map of compact Riemannian manifolds if and
only if f∗ is harmonic as form in A1(M, f ∗TM ′).
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2.1. Harmonic maps

Fundamental form, some results in case of signed curvature

Definition 4. The fundamental form of a map f : M −→M ′ of Riemannian manifolds is
the (0,2) symmetric tensor on M with value in E = f ∗TM ′ defined by

β(f) := ∇̃f∗ =
(
fγij + Γ′γαβfαi f

β
j

)
dxi ⊗ dxj ⊗ ẽγ.

The function f is called totally geodesic if β(f) = 0 identically on M .

Remark 4. 1. The tension field τ(f) = gijβ(f)ij is the trace of the fundamental form.

2. If f is totally geodesic then it is harmonic.

When s = f∗, Lemma 3 and Remark 3 become Lemma 5, with no more than direct compu-
tation. The appearance of Riemann curvature tensor R′ of (M ′, g′) is due to the formula

R′ρσµν = ∂µΓ′ρνσ − ∂νΓ′ρµσ + Γ′ρµλΓ′λνσ − Γ′ρνλΓ′λµσ.

Lemma 5. 1. Q(f∗) is given by

Q(f∗) = R′αβγδf
α
i f

β
j f

γ
k f

δ
l g

ikgjl − Ricijfαi f
β
j g
′
αβ

and
Q(f∗)ijαβ = R′αβγδf

γ
k f

δ
l g

ikgjl − Ricijg′αβ.

2. If f is harmonic then

−∆e(f) = |β(f)|2 −R′αβγδfαi f
β
j f

γ
k f

δ
l g

ikgjl + Ricijfαi f
β
j g
′
αβ

where |β(f)| is the pointwise norm of β(f).

The previous computation of Q(f∗) in term of Riemannian curvature of M ′ and Ricci cur-
vature of M give the following result in case the curvature of M and M ′ are of definite sign.

Notation. Given a Riemannian manifold M , we will use the following notation:

1. Ric ≥ 0 (resp. Ric > 0) if the Ricci curvature is positive semi-definite (resp. positive
definite) as symmetric bilinear form.

2. Riem ≤ 0 (resp. Riem < 0) if all sectional curvatures are negative (resp. strictly nega-
tive), i.e. Rijhku

ivjuhvk ≤ 0 (resp. Rijhku
ivjuhvk < 0) for non-colinear vectors u, v.

Corollary 5.1. Let f : M −→M ′ be a map of Riemannian manifolds.

1. If f is harmonic and Q(f∗) ≤ 0 then f is totally geodesic and e(f) is constant.

2. If Ric(M) ≥ 0 and Riem(M ′) ≤ 0 then f is harmonic if and only if f is totally geodesic.
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2. Harmonic maps of Riemannian manifolds

Proof. All the statements are consequence of 2) of Lemma 5 and the fact that
∫
M ∆e(f)dV = 0,

noticing that

• Ricijfαi f
β
j g
′
αβ is Ric⊗ g′ applied doubly to fαi dxi ⊗ ẽα.

• R′αβγδf
α
i f

β
j f

γ
k f

δ
l g

ikgjl is (f ∗R′)ijhkgikgjl. In a normal coordinate at P where gik = δik, g
jl =

δjl, it is the sum of sectional curvatures of tangent planes formed by f∗ei, f∗ej, and
therefore negative.

2.1.4 Example: Riemannian immersion
Let f : M −→ M ′ be a Riemannian immersion, i.e. Tf is injective and f ∗g′ = g. We will
see that the fundamental form β(f) that we defined earlier is the same as usual definition in
courses of Riemannian geometry.

Second fundamental form.

One defines the symmetric (0,2)-tensor II of f ∗TM ′ as the unique normal vector of M such
that

〈IIij, ξσ〉 := −〈∇̃iξσ, f∗ej〉

for every vector field ξσ of M ′ orthogonal to M .

Lemma 6 (Second fundamental form). If f is a Riemannian immersion then β(f)ij = − IIij
and they are orthogonal to M . In particular, if f is totally geodesic than it maps geodesics of
M to geodesics of M ′

Proof. One has

〈∇̃iξσ, f∗ej〉 = 〈ξσ, ∇̃i(f∗ej)〉 = 〈ξσ, ∇̃i(fγl dxl ⊗ ẽγ)ej + f∗∇iej〉
= 〈ξσ, (fγildxlẽγ + fγl dx

l∇̃iẽγ)ej〉
= 〈ξσ, fγij ẽγ + fγj A

α
γi
ẽα〉 =

〈
ξσ,

(
fγij + Γ′γαβfαi f

β
j

)
ẽγ
〉

= 〈ξσ, ∇̃i(f∗).ej〉 = 〈ξσ, β(f)ij〉

(2.4)

where we used ξσ ⊥ f∗ej in the first line and ξσ ⊥ f∗([ei, ej]) in the second line. Hence
IIij ≡ −β(f)ij modulo an element in TM . It remains to see that β(f)ij ⊥ M in order to
conclude II = −β(f). By definition, one has β(f)ij = ∇̃i(f∗).ej and

〈β(f)ij, f∗ek〉 = 〈∇̃i(f∗).ej, f∗ek〉 = ∇̃i〈f∗ej, f∗ek〉 − 〈∇iej, ek〉 − 〈f∗ej, ∇̃i(f∗ek)〉
= ∇i〈ej, ek〉 − 〈∇iej, ek〉 − 〈β(f)ik, f∗ej〉 − 〈ej,∇iek〉
= −〈β(f)ik, f∗ej〉
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2.1. Harmonic maps

Then using the symmetric of β(f)ij, one has 〈β(f)ij, f∗ek〉 = 0.
Finally, if β(f) = 0 and X is a geodesic vector field of M , one needs to prove that f∗X is a

geodesic vector field of M ′. In fact

∇̃X(f∗X) = (∇̃Xf∗)X + f∗∇XX = β(f)(X,X) = 0.

Hence f∗X is a geodesic field of M ′.

Example 3. The inclusion x 7→ (x, y0) of a Riemannian manifold M to the Riemannian
product M ×N is totally geodesic.
Definition 5. Given an orthonormal frame (ξσ)1≤σ≤n′−n, the mean normal curvature field
of M in M ′ at P ∈M is defined as

ξ(P ) :=
n′−n∑
σ=1

gij〈IIij, ξσ〉ξσ = −
n′−n∑
σ=1
〈τ(f), ξσ〉ξσ.

The immersion f is said to be minimal if ξ vanishes identically on M .
Remark 5. 1. Since (ξσ)1≤σ≤n′−n is an orthonormal frame, one also has

ξ(P ) = −gij〈∇̃iξσ, f∗ej〉ξσ(P ) = −
n′−n∑
σ=1

div (ξσ(P )) ξσ(P )

2. The mean normal curvature field is the tension field of f , i.e. ξ = −τ(f). Minimal
immersions are exactly harmonic immersion.

The case of signed curvature.

If f : M −→ M ′ is a Riemannian immersion then the Ricci term of Lemma 5 is actually the
scalar curvature of M , one has

Proposition 7. Let f : M −→ M ′ be a Riemannian immersion. Suppose that Riem(M ′) ≤ 0
and r = gijRicij < 0 at one point of M . If f is harmonic then it is constant.

2.1.5 Composition of maps
The following results come from direct computation of the second fundamental form and tension
field of composition of maps between Riemannian manifolds. Again, we use indices i, j, k, . . .
for M , α, β, γ, . . . for M ′ and a, b, c, . . . for M ′′.

Proposition 8. Let f : M −→ M ′ and f ′ : M ′ −→ M ′′ be smooth maps of Riemannian
manifolds, then

β(f ′ ◦ f)aij = β(f)γijf ′aγ + β(f ′)aαβfαi f
β
j (2.5)

and
τ(f ′ ◦ f)a = τ(f)γf ′aγ + gijβ(f ′)aαβfαi f

β
j (2.6)

Therefore,

21/137



2. Harmonic maps of Riemannian manifolds

If f ′ is and f is then f ′ ◦ f is
totally geodesic totally geodesic totally geodesic
totally geodesic harmonic harmonic

and the inverse of a totally geodesic map is totally geodesic.

Remark 6. It is not true in general that the composition of harmonic maps are harmonic. For
example, if one composes the harmonic maps R −→ R2 : x 7→ (x, 2x) and R2 −→ R : (x, y) 7→
x2 − y2, the result is R −→ R : x 7→ −3x2, which is not harmonic.

Proposition 9 (composition with immersion). If f ′ : M ′ −→M ′′ is a Riemannian immersion
and f : M −→M ′ then

1. Energy functionals: E(f) = E(f ′ ◦ f).

2. Tension fields: τ(f) is the projection of τ(f ′ ◦ f) to M ′.

Proof. 1. One has e(f) = 1
2〈g, f

∗g′〉 = 1
2〈g, (f

′ ◦ f)∗g′′〉 = e(f ′ ◦ f).

2. One has τ(f ′ ◦ f)a = τ(f)a + gijβ(f ′)aαβfαi f
β
j by (2.6). The conclusion follows since the

second term is normal to M ′.

The following immediate corollary of Proposition 9 is a generalization of the fact that a
curve is geodesic if and only if it is perpendicular to its tension field.

Corollary 9.1. If f ′ : M ′ −→ M ′′ is a Riemannian immersion, then a map f : M −→ M ′ is
harmonic if and only if τ(f ′ ◦ f) ⊥M ′.

2.2 Nonlinear heat flow: Global equation and existence
of harmonic maps.

2.2.1 Statement of the main results.
We want to prove in the next part existence of harmonic map between manifolds M and M ′

by deforming any map f : M −→M ′ using the τ -flow, meaning solving the PDE:
dft
dt

= τ(ft), t ∈ [α, ω]
fα = f,

(2.7)

The equation makes sense because both dft
dt

and τ(ft) are vector fields along ft. Since this is
the gradient-descent equation for E, the energy of ft decreases and we hope, under conditions,
to obtain convergence of {ft} to a critical point f∞ of E, this will prove that any homotopy
class of C∞(M,M ′) has at least a harmonic map.

It is proved by Eells and Sampson [ES64] that
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2.2. Nonlinear heat flow: Global equation and existence of harmonic maps.

Theorem 10 (Eells-Sampson). LetM andM ′ be compact Riemannian manifolds with Riem(M ′) ≤
0 then there exists a harmonic map f : M −→M ′ in each homotopy class.

Several boundary conditions, of Dirichlet, Neumann or mixed type, are also taken into
account by Hamilton [Ham75], as an example, we will state the Dirichlet problem:

Theorem 11 (Hamilton). Let M and M ′ be compact Riemannian manifolds possibly with
boundary. Suppose that M ′ has Riem(M ′) ≤ 0 and ∂M ′ is convex, then any relative homotopy
class of C∞(M,M ′) has a harmonic element.

About the terminology, relative homotopy class means that we only deform f among
maps with the same value on ∂M . The convexity of ∂M ′ means that the geodesic at any
point in ∂M ′ with initial tangent vector parallel to the boundary does not enter the interior
of M ′ in short time. This condition can be expressed using the Christoffel symbols of M ′ at
the point in question: If M ′ is coordinated by y1, . . . , yn with and M ′ = {yn ≥ 0}, then the
convexity is translated as Γ′nαβ ≥ 0 as a symmetric form (1 ≤ α, β ≤ n−1). This can be seen by
the geometric intepretation of the second fundamental form of the embedding s : ∂M ′ ↪→ M ′,
which is II(s) = −Γ′nαβ.

It is easy to see that the convexity of ∂M ′ is a necessary condition, as harmonic maps from
R are geodesics: Suppose the condition does not hold at x ∈ ∂M ′, meaning that upto time t
the geodesic flow of M ′ initially tangent to ∂M ′ remains in the interior. The geodesic of ∂M ′

of length less than t with the same initial tangent therefore cannot be deformed into a geodesic
of M ′ in relative homotopy class.

2.2.2 Strategy of the proof.
In order to have a global frame, we will embed M ′ into an Euclidean space V , but we will not
use the Euclidean metric of V . In fact, let T be a tubular neighborhood of M ′ in V then if T
is trivial, i.e. if it is diffeomorphic to M ′ ×D where D is a sufficiently small ball of dimension
being the codimension of M ′ in V , and we will equip T with the product metric of M ′ ×D.

If T is not trivial, using a partition of unity ofM ′, one can construct a metric on T as linear
combination of the product metrics on trivialised pieces so that the involution ι : T −→ T

locally given by (y, d) 7→ (y,−d) for y ∈ M ′, d ∈ D is an isometry. As a consequence, M ′ is
totally geodesic in T .

Since M ′ ≡M ′×{0} is totally geodesic in T , one has for every smooth function f : M −→
M ′:

τT (f) = τM ′(f)

The crucial property we expect for a global equation of (2.7), is the following: if the solution
initially is in M ′ ⊂ V then it remains in M ′ for all relevant time t > α. Eells-Sampson [ES64]
did this by using at the same time 2 different metrics on T , namely the product metric as
tubular neighborhood and the Euclidean metric. I choose to present here the formulation of
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2. Harmonic maps of Riemannian manifolds

Hamilton, which is conceptually simpler with the only drawback being that we need to establish
the uniqueness of solution of (2.7) first.

After having the global equation, we will prove the short time existence of solution by
linearising the equation and using Inverse function theorem. The global formulation and the
proof of short-time existence are independent of the negative curvature hypothesis, which will
only be used later to establish energy estimates and assure the convergence of long-time solution
and the vanishing of its tension field.

2.2.3 Global equation and Uniqueness of nonlinear heat equation.
Theorem 12 (Global equation). If the smooth function Ft : M × [α, β] −→ V satisfies

dFt
dt

= τT (Ft) (2.8)

and Ft(M × {α}) ⊂M ′ then Ft(M × [α, ω]) ⊂M ′

Proof. Let ι be the isometry of T locally given by (y, d) 7→ (y,−d) for (y, d) ∈ M ′ × D ≡ T

and pose Gt = ιFt then Gt and Ft coincide initially since M ′ is fixed by ι. Moreover

dGt

dt
= dι.

dFt
dt

= dι(τT (Ft)) = τT (ιFt) = τT (Gt)

We conclude that Ft = Gt = ιFt, hence Ft remains in M ′ for all relevant t, using the following
uniqueness of nonlinear heat equation.

Theorem 13 (Uniqueness of solution of nonlinear hear equation). Let f1, f2 : M×[α, ω] −→M ′

be C2 functions satisfying the non-linear heat equation dfi
dt

= τM ′(fi), i.e.

dfi
dt

= −∆fγ + gijΓ′γαβfαi f
β
j

where Γ′γαβ are Christoffel symbols of M ′. Suppose that f1 and f2 coincide on M × {α}. Then
f1 = f2 on M × [α, ω].

Proof. It is sufficient to prove the theorem for ω very close to α, therefore by compactness ofM ,
we can suppose that there exists a finite atlas M = ⋃

i Ui with f1(Ui × [α, ω]) and f2(Ui, [α, ω])
being in the same chart Vi of M ′. We consider the distance function σ(a, b) = 1

2dM ′(a, b)
2 for

a, b ∈M ′ to measure the difference between f1 and f2 by

ρ(x, t) = σ(f1(x, t), f2(x, t))

The strategy is to prove that there exists C > 0 such that dρ
dt
≤ −∆ρ+Cρ, then by Maximum

principle, one has ρ = 0.
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2.2. Nonlinear heat flow: Global equation and existence of harmonic maps.

Fix a chart Ui ofM and the corresponding Vi ofM ′, one has by straightforward calculation:

dρ

dt
= −∆ρ− gij

(
∂2σ

∂fβ1 ∂f
γ
1
− ∂σ

∂fα1
Γ′αβγ(f1)

)
f1
β
i f1

γ
j

− gij
(

∂2σ

∂fβ2 ∂f
γ
2
− ∂σ

∂fα2
Γ′αβγ(f2)

)
f2
β
i f2

γ
j − 2gij ∂2σ

∂fβ1 ∂f
γ
2
f1
β
i f2

γ
j (2.9)

where gij is the metric on M and Γ′αβγ are Christoffel symbols of M ′.
Let c be a point in the chart Vi and choose the normal coordinates of M ′ at c. Then for

a, b ∈ M ′ near c, one has, since σ(a, b) = σ(b, a) and σ(a, b) = 0 if bγ = kaγ (the Euclidean
straight line from a to ka viewed on M ′ is a geodesic):

σ(a, b) = 1
2dM

′(a, b)2 = 1
2dE(a, b)2 + λβγ,δ(aβaγbδ + bβbγaδ)

where dE is the Euclidean distance, with λβγ,δ = λγβ,δ and λβγ,δ + λγδ,β + λβδ,γ = 0. We then
have the series development of σ at (0, 0):

σ(a, b) = 1
2δβγ(a

β − bβ)(aγ − bγ) + λβγ,δ(aβaγbδ + bβbγaδ) +O(|a|+ |b|)4 (2.10)

and the development of its derivatives

∂2σ

∂aβ∂bγ
(a, b) = −δβγ + λβδ,γa

δ + λγδ,βb
δ +O(|a|+ |b|)2

∂2σ

∂aβ∂aγ
(a, b) = δβγ + λβγ,δb

δ +O(|a|+ |b|)2

∂2σ

∂bβ∂bγ
(a, b) = δβγ + λβγ,δa

δ +O(|a|+ |b|)2

∂σ

∂aα
(a, b) = O(|a|+ |b|), Γ′αβγ(a) = O(|a|)

So choose c to be the midpoint of f1(x, t) and f2(x, t) and (f1(x, t), f2(x, t)) = (w,−w) in the
chart, one has:

dρ

dt
= −∆ρ−

(
δβγ − λβγ,δwδ +O(|w|2)

)
f1
β
i f1

γ
j g

ij −
(
δβγ + λβγ,δw

δ +O(|w|2)
)
f2
β
i f2

γ
j g

ij

(2.11)
− 2

(
−δβγ + λβδ,γw

δ − λγδ,βwδ +O(|w|2)
)
f1
β
i f2

γ
j g

ij (2.12)

= −∆ρ− |df1 − df2|2 − wδλβγ,δgij
(
f2
β
i f2

γ
j − f1

β
i f1

γ
j

)
(2.13)

where we made a reduction of the term (2.12), using the symmetric role of β and γ to cancel
the first order term wδ. This symmetry is not apparent in the term (2.12) itself, but can be
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seen through their symmetry in the 2 terms of (2.11) and their symmetry in the sum of all
three, i.e. in the RHS of (2.9). The last term of (2.13) can be bounded as follows:∣∣∣wδλβγ,δ (f2

β
i f2

γ
j − f1

β
i f1

γ
j

)
gij
∣∣∣ =

∣∣∣wδλβγ,δ (f2
β
i (f2

γ
j − f1

γ
j ) + f1

γ
j (f2

β
i − f1

β
i )
)
gij
∣∣∣

≤ 2|wδλβγ,δ||df2 − df1|(|df1|+ |df2|)
≤ |df1 − df2|2 +O(|w|2)

where for the last inequality, we use 2uv ≤ u2 + v2 and the fact that |df1| and |df2| are bounded
on M . The estimate (2.13) can be continued:

dρ

dt
≤ −∆ρ+ C(x, t)|w|2 ≤ −∆ρ+ Cρ

where C > 0 is a constant chosen to dominate all C(x, t) for x ∈ M in all charts and t ∈
[α, ω].

Remark 7. The original proof of [Ham75] made the reduction of the first order of w in (2.12)
using the following development of σ:

σ = 1
2δβγ(a

β − bβ)(aγ − bγ) + λβγ,δ(aβ − bβ)(aγ − bγ)(aδ + bδ) +O(|a|+ |b|)4

which was justified by σ(a, b) = σ(b, a) and σ(a, a) = 0. It can be proved that this is equivalent
to (2.10) and the symmetries λβγ,δ = λγβ,δ, λβγ,δ + λγδ,β + λβδ,γ = 0.

As a side note, if a, b, c are on S2 with d(a, c) = d(b, c) = x� 1 and the lines from a and b to
c are orthogonal at c, then the geodesic distance d(a, b) = arccos(cos2(x)) = x

√
2− 1

6
√

2x
3+O(x4).

So σ(a, b) = 1
2d(a, b)2 has no third-order term.

2.3 A few energy estimates.

2.3.1 Estimate of density energies
We finish this part with a few straightforward computation concerning the potential energy
e(ft) = 1

2 |∇ft|
2 and the kinetic energy k(ft) = 1

2 |
dft
dt
|2 of a nonlinear heat flow ft satisfying

(2.7).

Theorem 14 (Density of Potential energy). If ft satisfies (2.7) then
de(ft)
dt

= −∆e(ft)− |β(ft)|2 − 〈Ric(M)∇vft,∇vft〉+ 〈Riem(M ′)(∇vft,∇wft)∇vft,∇wft〉

where e(ft) is the potential energy density and β(ft) is the fundamental form and in the curva-
ture terms, the vectors v and w are contracted.

In particular, if Riem(M ′) ≤ 0 and Ric(M) ≥ −C then
de

dt
≤ −∆e+ Ce− |β(ft)|2 (2.14)
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Proof. Apply Lemma 3 to s = dft and the Riemannian-connected bundle F ∗TM ′ over M ×
[α, ω] where F (·, t) = ft, the curvature terms cancel out and it remains to see that de(ft)

dt
=

−〈dft,∆dft〉, meaning that ∇̃∂tdft = −∆dft. This can be easily justified:

∇̃∂tdft = ∇̃∂t∇̃MF = ∇̃M∇̃∂tF = ∇̃M τ(ft) = −Dδ(dft) = −∆dft

where the last "=" is due to Ddft = 0. Note that D and δ are the exterior derivative and its
adjoint of the bundle (ft)∗TM ′ on M , where t can be fixed after the third "=" sign.

Theorem 15 (Density of Kinetic energy). If ft satisfies (2.7) then

dk(ft)
dt

= −∆k(ft)−
∣∣∣∣∣∇∂ft∂t

∣∣∣∣∣
2

+
〈

Riem(M ′)(∇vft,
∂ft
∂t

)∇vft,
∂ft
∂t

〉

where k(ft) is the kinetic energy density and in the curvature terms, the vectors v is contracted,
In particular, if Riem(M ′) ≤ 0 then

dk

dt
≤ −∆k −

∣∣∣∣∣∇∂ft∂t
∣∣∣∣∣
2

(2.15)

Proof. Let F : I ×M −→ M ′ be the total function with F (t, ·) = ft for t ∈ I = [α, ω] and
E = F ∗TM ′ is a Riemannian-connected bundle on I ×M with curvature form Θ, then

∇̃∂t∇̃v(dF.v) = ∇̃v∇̃∂t(dF.v) + Θ(∂t, v)dF.v (2.16)

where dF is the exterior derivative of ft on M . Note that ∇̃v∇̃∂t(dF.v) = ∇̃v(∇̃∂tdF ).v =
∇̃v(∇̃M ∂ft

∂t
).v since ∇̃M ∂ft

∂t
= ∇̃I×M

∂t dF = ∇̃I
∂tdF because ∇̃ is torsionless on M ′. Plugging this

in (2.16) and taking contraction in v, one has

∇̃∂t τ(ft) = −∆̃∂ft
∂t

+ Tr (v 7→ Θ(∂t, v)dF.v) (2.17)

But Θβ
α = R′βανµF

µ
i F

ν
j dx

i ⊗ dxj where R′ denotes the Riemannian curvature of M ′ and the
indices i, j can be 0, with x0 ≡ t. Hence

Θ(∂t, v)dF.v = R′βανµ
∂fµt
∂t

∂f νt
∂v

∂fαt
∂v

ẽβ = Riem(M ′)
(
∇vft,

∂ft
∂t

)
∇vft

Plugging in (2.17) and taking inner product with ∂ft
∂t
, one has

∂k(ft)
∂t

=
〈
∇̃∂t τ(ft),

∂ft
∂t

〉
= −

〈
∆̃∂ft
∂t
,
∂ft
∂t

〉
+
〈

Riem(M ′)(∇vft,
∂ft
∂t

)∇vft,
∂ft
∂t

〉

= −∆
1

2

∣∣∣∣∣∂ft∂t
∣∣∣∣∣
2
− ∣∣∣∣∣∇̃∂ft∂t

∣∣∣∣∣
2

+
〈

Riem(M ′)(∇vft,
∂ft
∂t

)∇vft,
∂ft
∂t

〉
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2. Harmonic maps of Riemannian manifolds

2.3.2 Estimate of total energies
We will now work with the total energies, in particular the total potential energy E(ft) :=∫
M e(ft) and total kinetic energy K(ft) :=

∫
M k(ft). Since tension field is the gradient of E,

one has:

Theorem 16. If ft : M −→M ′ satisfies (2.7) then

dE(ft)
dt

= −
∫
M

〈
τ(ft),

∂ft
∂t

〉
= −

∫
M
|τ(ft)|2 = −2K(ft) ≤ 0.

Integrating Theorem 15 on M then using Theorem 16, one obtains:

Theorem 17. If ft satisfies (2.7) and Riem(M ′) ≤ 0 then d
dt
K(ft) ≤ 0 and one has

1. The total potential energy E(ft) is ≥ 0, decreasing and convex.

2. The total kinetic energy K(ft) is ≥ 0, decreasing and if ω = +∞ then limt→∞K(ft) = 0.

In particular,
∫
M×{τ} |∇f |2 and

∫
M×{τ}

∣∣∣∂ft
∂t

∣∣∣2 are bounded above by a constant C > 0 independent
of the time τ ∈ [α, ω].

Note that we ruled out the case K(ft) decreases to a strictly positive limit because E(ft) is
bounded below and d

dt
E(ft) = −2K(ft).

Integrating Theorem 14 on M then using Theorem 17, one has:

Theorem 18. If ft satisfies (2.7) and Riem(M ′) ≤ 0 and Ric(M) is bounded below then∫
M
|β(ft)|2 ≤ C

for all time t where the constant C only depends on the curvature of M,M ′ and the initial total
potential and kinetic energy, in particular, C does not depend on t.

This means that ‖ft‖W 2,2(M) is bounded by a constant C only depending on the curvatures
and initial total energies.

Corollary 18.1 (Boundedness in W 2,2(M)). If Ft satisfies (2.8) and Riem(M ′) ≤ 0 and
Ric(M) is bounded below then

‖Ft‖2
W 2,2(M) :=

∫
M
|β(Ft)|2 + |∇Ft|+ |F |2 ≤ C

for all time t where the constant C only depends on the curvature of M,M ′ and the initial total
potential and kinetic energy, in particular, C does not depend on t.

Note that the term |F |2 is trivially bounded since the image of F remains in an Euclidean
ball B.
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Part II

Resolution of nonlinear heat equation
on manifold
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Chapter 3

Short-time existence and regularity for
nonlinear heat equation

We will establish in this part a regularity estimate for the quadratic term of nonlinear heat
operator use it to setup a bootstrap scheme that eventually will prove that any sufficiently
regular solution of nonlinear heat equation that is initially C∞ will be always C∞.

We will also prove short-time existence using well-known method of Inverse function theorem
for Banach spaces. Since the solution is smooth, we can apply Theorem 12 to conclude that
the it remains in M ′ ⊂ RN .

3.1 Review of Sobolev spaces and Linear equations.
The following results are well-known and their statements are written here in the case of our
interest (linear heat equation on manifold). A more careful formulation with complete proofs
can be found in the appendices.

3.1.1 Sobolev spaces.
Let M be a Riemannian manifold, the Sobolev spaces W k,p(M) on M can be defined as the
completion of C∞(M) with respect to the Sobolev norms

‖ϕ‖Wk,p =
∑
|α|≤k
‖Dαϕ‖Lp .

We will suppose that M is a compact manifold, then set-theoretically W k,p does not depend
on the metric of M and their norm remains in the same equivalent class as the metric varies.
The Sobolev spaces form a family of reflexive Banach spaces that is stable under holomorphic
interpolation:
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3. Short-time existence and regularity for nonlinear heat equation

Theorem 19 (Interpolation of Sobolev spaces). Let p, q ∈ (1,+∞) and k, l ∈ R and M be a
compact Riemannian manifold. Then the holomorphic interpolations of

A0 := W k,p(M) and A1 := W l,q(M)

are Aθ = W s,r(M) where

θl + (1− θ)k = s, θ
1
q

+ (1− θ)1
p

= 1
r
.

In particular, one has the Interpolation inequality

‖f‖W s,r ≤ 2‖f‖θW l,q‖f‖1−θ
Wk,p .

Sobolev embeddings and Kondrachov theorem remain correct on manifold.

Theorem 20 (Sobolev embeddings). Given k, l ∈ Z, k > l ≥ 0 and p, q ∈ R, p > q ≥ 1. Then

1. If 1
p

= 1
q
− k−l

n
then

W k,q(M) ↪→ W l,p(M),

2. If k−r
n
> 1

q
then

W k,q(M) ↪→ Cr(M)

If k−r−α
n
≤ 1

q
then

W k,q(M) ↪→ Cr,α(M)

where Cr(M) denotes the space of Cr functions equipped with the norm ‖u‖Cr = maxl≤r sup |∇lu|,
and Cr,α is the subspace of Cr of functions whose rth-derivative is α-Holder, equipped with the
norm ‖u‖Cr,α = ‖u‖Cr + supP 6=Q{

u(P )−u(Q)
d(P,Q)α }.

Theorem 21 (Kondrachov). Let k ∈ Z≥0 and p, q ∈ R>0 be such that 1 ≥ 1
p
> 1

q
− k

n
> 0 then

1. The embedding W k,q(M) ↪→ Lp(M) is compact,

2. The embedding W k,q(M) ↪→ Cα(M) is compact if k − α > n
q
where 0 ≤ α < 1,

It is also natural, for regularity results of parabolic equation, to use weighted Sobolev spaces
because each derivative in time should be counted as twice as that in space. For example, the
space W 2,p(M × [α, ω]) is the completion of C∞(M) with respect to the norm

‖ϕ‖W 2,p := ‖ϕ‖Lp +
∥∥∥∥∥dϕdt

∥∥∥∥∥
Lp

+
∑
i,j

∥∥∥∥∥ ∂2ϕ

∂xi∂xj

∥∥∥∥∥
Lp

+
∑
i

∥∥∥∥∥ ∂ϕ∂xi
∥∥∥∥∥
Lp

Similarly, one can define W 2k,p(M × [α, ω]) using Lp-norm of derivatives ∂βt ∂γxϕ of ϕ with
2β + γ ≤ 2k.
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3.1. Review of Sobolev spaces and Linear equations.

We also want to be able to talk about W k,p when k is not an integer and not necessarily
positive. This allows us to have a more flexible bootstrap scheme for nonlinear heat equation
and to use Interpolation Theorem 19 more efficiently. We claim that these generalised Sobolev
spaces (with weight and with non-integral regularity) can be defined on manifold and satisfy all
the above properties (reflexivity, Interpolation theorem, Sobolev embedding and Kondrachov
theorem) and refer to the appendices for all the details.

3.1.2 Trace theorem.
It is possible to avoid a discussion on Trace operator if we only want to make sense of the initial
condition of nonlinear heat equation: one can consider only solutions with regularity greater
than W 2,p(M × [α, ω]) with p ≥ dimM + 2, which can be embedded in C(M). It is however
necessary to investigate regularity of Trace operator to have a complete proof of the bootstrap.
We will review briefly some results.

The following two behaviors of trace are well-known:

1. If −1 + 1
p
< k < 1

p
then the natural map W k,p(M × [α, ω]/α) ↪→ W k,p(M × [α, ω]) is an

isomorphism, where W k,p(M × [α, ω]/α) denotes the completion under W k,p-norm of the
space of smooth functions vanishing on a neighborhood of M × {α}. There is therefore
no meaningful notion of trace in this case.

2. If k > 1
p

+ l, l ≥ 0, then the restriction map

B : C∞(M × [α, ω]) −→ C∞(M) : f(x, t) 7−→ f(x, α)

extends to a bounded operator B : W k,p(M× [α, ω]) −→ W l,p(M), called Trace operator.

We will topologise the space ∂αW k,p(M × [α, ω]) of restrictions to time t = α of functions in
W k,p(M × [α, ω]), in case Trace operator is well defined, as cokernel of B, that is, as a quotient
space of W k,p(M × [α, ω]). This makes ∂αW k,p(M × [α, ω]) a Banach space with stronger norm
than any W l,p(M) for any l < k − 1

p
.

3.1.3 Linear equations on manifolds.

Existence and Regularity.

It can be easily verified that the linear heat operator AF := d
dt
F + ∆F is a parabolic operator

and therefore is also an elliptic operator. All of the following results holds for operator A.

Theorem 22 (Regularity for elliptic operator). LetM be a compact manifold and AF := d
dt
F+

∆F be an elliptic operator of second order. Given 1
p
< l < k < ∞ and F ∈ W l,p(M × [α, ω])

and suppose that

AF ∈ W k−2,p(M × [α, ω]), f
∣∣∣
α
∈ ∂αW k,p(M × [α, ω]), f

∣∣∣
ω
∈ ∂αW k,p(M × [α, ω]).
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3. Short-time existence and regularity for nonlinear heat equation

Then actually F ∈ W k,p(M × [α, ω]).

Theorem 23 (Causality of parabolic equation). Let M be a compact manifold and AF :=
d
dt
F + ∆F + a∇F + bF be an parabolic operator. Then

A : W k,p(M × [α, ω]/α) −→ W k−2,p(M × [α, ω]/α)

is an isomorphism of Banach spaces.

Theorem 24 (Gårding’s Inequality and Regularity for parabolic operator). LetM be a compact
manifold, p ∈ (1,+∞), k > l > −∞ and AF := d

dt
F + ∆F be a parabolic operator. We write

W k,p([β, γ]) shortly for W k,p(M × [β, γ]). Suppose that

F ∈ W l,p([α, ω]), AF ∈ W k−2,p([α, ω]).

Then F ∈ W k,p([π, ω]) for all π ∈ (α, ω). Also, there exists a constant C > 0 such that

‖F‖Wk,p([π,ω]) ≤ C
(
‖AF‖Wk−2,p([α,ω]) + ‖F‖W l,p([α,π])

)
.

In particular for homogeneous equation, the solution is C∞ and an arbitrarily weak estimate in
the past gives an arbitrarily strong estimate in the future.

Maximum principle and Comparison theorems.

Other than regularity results which are generally true for parabolic operators, the linear heat
operator also enjoys the following versions of Maximum principle. See Appendices for their
proofs.

Theorem 25 (Maximum principle). Let M be a compact manifold and f : M × [α, ω] −→ R
be a continuous function with f

∣∣∣
α
≤ 0. Suppose that whenever f > 0, f is smooth and

∂f

∂t
≤ −∆f + Cf.

Then in fact f ≤ 0.

With the same proof as Theorem 25, one also has:

Theorem 26 (L∞-Comparison theorem). Let f : M × [α, ω] −→ R be a continuous function
on M , smooth for all time t > 0 such that

df

dt
= −∆f + bf on M × (α, ω]

where b is a smooth function on M . Then there exists a constant B depending only on b such
that

‖f
∣∣∣
ω
‖L∞ ≤ eB(ω−α)‖f

∣∣∣
α
‖L∞ .
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3.2. Regularity estimate of the quadratic term.

Using backwards heat equation and Theorem 26, one can prove its version for L1.

Theorem 27 (L1-Comparison theorem). Let f : M × [α, ω] −→ R be a continuous function
on M , smooth for all time t > 0 such that

df

dt
= −∆f + bf on M × (α, ω]

where b is a smooth function on M . Then there exists a constant B depending only on b such
that

‖f
∣∣∣
ω
‖L1 ≤ eB(ω−α)‖f

∣∣∣
α
‖L1 .

3.2 Regularity estimate of the quadratic term.

Theorem 28 (Regularity of the quadratic term). Let F : M × [α, ω] −→ B ⊂ RN be in
W s,q(M × [α, ω]) ∩ C(M × [α, ω]) and

PF := gijΓ′αβγ(F )F β
i F

γ
j .

Suppose that
r ≥ 0, p, q ∈ (1,∞), r + 1 < s,

1
p
>
r + 2
s

1
q
. (3.1)

Then one has PF ∈ W r,p(X) and

‖PF‖W r,p ≤ C (1 + ‖F‖W s,q)q/p .

where C is a constant independent of F .

Proof. We will suppose here that r, s are even integers so that theW r,p (respectivelyW s,q) norm
of PF (respectively F ) can be written as sum of Lp (respectively Lq) norms of its derivatives.
Also, we will use chain rule freely to differentiate the term Γ′αβγ(F ) using weak derivatives of F .
The general and rigorous proof, which involves non-integral Sobolev space to treat r, s and a
detour to Besov spaces to justify chain rule, can be found in the appendices.

The derivatives of PF that appear in its W r,p norm are of form

C(x, F )
∏
i

∂bit ∂
ci
x F

βi

where 2∑ bi + ∑
ci ≤ r + 2 and max{2bi + ci} ≤ r + 1 and C(x, F ) is bounded on M . Using

Multiplication theorem for Lp-spaces, one has∥∥∥∥∥C(x, F )
∏
i

∂bit ∂
ci
x F

βi

∥∥∥∥∥
Lp

≤ ‖C(x, F )‖L∞
∏
i

∥∥∥∂bit ∂cix F βi
∥∥∥
Lpi
≤ ‖C(x, F )‖L∞

∏
i

‖F‖W 2bi+ci,pi
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3. Short-time existence and regularity for nonlinear heat equation

as long as we choose pi ∈ (1,∞) such that 1
p
≥ ∑ 1

pi
. The strategy is to choose 1

pi
big enough to

have W s,q ↪→ W 2bi+ci,pi in order to bound ‖F‖W 2bi+ci,pi by ‖F‖W s,q , then use the upper bound
of 2bi + ci to justify that 1

p
> r+2

s
1
q
≥ ∑ 1

pi
, meaning that such choice of pi are valid.

The straightforward way to have a sufficient condition of pi such that W s,q ↪→ W 2bi+ci,pi is
to use Sobolev embeddings but the result is sub-optimal because Sobolev embeddings do not
take into account the L∞-boundedness of F (its image lies in a compact of RN). A better way
is to use Interpolation inequality, by remarking that F ∈ W 0,v for all v ∈ (1,+∞) and writing
W 2bi+ci,pi as an interpolation space of W s,q and W 0,v. It can be seen, by direct computation,
that the sufficient condition for W s,q ↪→ W 2bi+ci,pi is 2bi + ci < s and

0 < 1
pi
− 2bi + ci

s

1
q
< 1− 2bi + ci

s
.

Choose 1
pi

just a bit bigger than 2bi+ci
s

1
q
, one still has

∑ 1
pi
'
∑ 2bi + ci

s

1
q
≤ r + 2

s

1
q
<

1
p
.

The conclusion follows.

3.3 Regularity for nonlinear heat equation.
Let p > dimM + 2, using the regularity estimate for the quadratic term, we now can prove:

Theorem 29 (Bootstrap for nonlinear heat equation). Let F : M × [α, ω] −→ B such that
F ∈ W 2,p(M × [α, ω]) and dFt

dt
= τ(Ft), i.e.

dFα

dt
= −∆Fα + gijΓ′αβγ(F )F β

i F
γ
j

and F
∣∣∣
M×{α}

is smooth. Then F is smooth on M × [α, ω].

Remark 8. Note that since p > dimM + 2 = dim(M × [α, ω]) + 1, if F ∈ W 2,p(M × [α, ω])
then F and ∂F

∂xi
are in C(M × [α, ω]) by Sobolev embeddings. It makes sense then to talk about:

1. the restriction and boundary condition at time t = α (in fact, by Trace theorem, p > 1 is
enough).

2. the pointwise condition F : M × [α, ω] −→ B ⊂ V .

Proof. We define the operators PF := gijΓ′αβγ(F )F β
i F

γ
j and AF := dF

dt
+ ∆F . We will abusively

denote W k,p(M × [β, γ]) by W k,p([β, γ]). Our bootstrap scheme consists of 3 steps:
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3.4. Short-time existence for nonlinear heat equation.

1. Prove that F ∈ W 2,p̃([π, ω]) for every π > α and p̃ ∈ (1,∞). By compactness of M , it is
sufficient to prove this for a sequence p̃→ +∞.

2. Prove that F is C∞ for all time t > α.

3. Prove that F is C∞ on M × [α, ω].

Step 1. By Theorem 28, AF = PF ∈ W r,q([α, ω]) whenever r < 1 and 1
q
> ( r2 + 1)1

p
.

Apply Gårding inequality, for all π > α, F ∈ W r+2,q([π, ω]) ⊂ W 2,p̃([π, ω]) for 1
p̃

= 1
q
− r

dimM+1 .
Choose 1

q
very close to ( r2 + 1)1

p
, one sees that the condition on p̃ is 1

p̃
> ( r2 + 1)1

p
− r

p−1 , which
will be satisfied if 1

p̃
> (1− r

2)1
p
, i.e. for all p̃ < p

1−r/2 . It remains to repeat this result to finish
the first step. We will say F ∈ W 2,∗([π, ω]) for F ∈ W 2,p([π, ω]) for all p ∈ (1,∞).

Step 2. By Theorem 28, for all r < 1, one has AF = PF ∈ W r,∗([π, ω]), therefore by
Gårding inequality, F ∈ W r+2,∗([π, ω]). Iterate this result and one has F ∈ W k,∗([π, ω]) for all
k ∈ [2,∞) and π > α. So F is smooth for t > α.

Step 3. We apply regularity result (Theorem 22) for elliptic operator A and boundary
operators B0 : F 7→ F

∣∣∣
M×{α}

and B1 : F 7→ F
∣∣∣
M×{ω}

: For q, r in Step 1, one has AF = PF ∈
W r,q([α, ω]) and BjF ∈ ∂W r,q, therefore F ∈ W r+2,q([α, ω]) ⊂ W 2,p̃([α, ω]) for the same p̃ as
Step 1. This proves that F ∈ W 2,∗([α, ω]), which also means that one has F ∈ W r+2,q([α, ω])
with no additional condition on q except q ∈ (1,∞). Iterate and one obtains the regularity of
F on [α, ω].

Remark 9. The first 2 steps were to prove the regularity of F
∣∣∣
M×{ω}

, which was then used as
a boundary condition in order to apply regularity result for elliptic operator on manifold with
boundary.

3.4 Short-time existence for nonlinear heat equation.
We will choose as always p > dimM + 2. As before, M is a compact Riemannian manifold and
B ⊂ RN is a large Euclidean ball.

Theorem 30 (Short-time existence). Let Fα : M −→ B be a smooth map, then there exist
ε > 0 depending on Fα and F : M × [α, α + ε] −→ B such that F ∈ W 2,p(M × [α, α + ε]) with
F
∣∣∣
M×{α}

= Fα and
dFt
dt

= τ(Ft) on M × [α, α + ε]

Proof. We find F as a sum F = Fb + F# where Fb ∈ C∞(M × [α, ω]) satisfies the initial
condition and F# ∈ W 2,p(M × [α, α + ε]/α).
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3. Short-time existence and regularity for nonlinear heat equation

The nonlinear heat operator can be written as:

T : W 2,p(M × [α, ω]/α)⊕N −→ Lp(M × [α, ω])⊕N

F# 7−→ τ(Fb + F#)

where τ(F )α = −∆Fα+gijΓ′αβγ(F )F β
i F

γ
j , which can be rewritten as τ(F ) = −∆F+Γ(F )(∇F )2.

The derivative of T at F# in direction k ∈ W 2,p(M × [α, ω]/α)⊕N is

DT (F#)k = −∆k +DΓ(F ) · k.(∇F )2 + 2Γ(F )∇F.∇k,

or in local coordinates:

DT (F#)α = gij
(
∂2kα

∂xi∂xj
− Γlijkαl

)
+ gij

∂Γ′αβγ
∂yδ

kδF β
i F

γ
j + 2gijΓ′αβγ(F )F β

i F
γ
j

which is of form DT (F#)k = −∆k − a(x, F )∇k − b(x, F )k where a, b are smooth.
Therefore if we note

H : W 2,p(M × [α, ω]/α)⊕N −→ Lp(M × [α, ω])⊕N

F# 7−→ ( d
dt
− τ)(Fb + F#)

then the derivative of H at F# = 0 is

DH(0) · k = dk

dt
+ ∆k + a(x, Fb)∇k + b(x, Fb)k

which by Theorem 23 is an isomorphism fromW 2,p(M×[α, ω]/α)⊕N toW 0,p(M×[α, ω]/α)⊕N =
Lp(M × [α, ω])⊕N . This shows that H is a local isomorphism mapping a neighborhood of 0 to
a neighborhood of ( d

dt
− τ)Fb.

Define gε ∈ Lp(M × [α, ω])⊕N by

gε :=

0, if t ∈ [α, α + ε]
( d
dt
− τ)Fb, if t > α + ε

which is arbitrarily Lp(M × [α, ω])-close to ( d
dt
− τ)Fb for 0 < ε � 1. There exists therefore

F# ∈ W 2,p(M × [α, ω]/α)⊕N such that H(F#) = gε, meaning that the function F = Fb + F# :
M −→ V satisfies F

∣∣∣
M×{α}

= Fα and dF
dt
− τ(Ft) = 0 for t ∈ [α, α + ε].

By Regularity Theorem 29, F is C∞ for t ∈ [α, α + ε]. Theorem 12 assures that the image
of F is in M , hence in M ′ for t ∈ [α, α + ε].
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Chapter 4

Global existence for nonlinear heat
equation and harmonic maps between
Riemannian manifolds

Let M be a compact Riemannian manifold. We want to solve the following nonlinear heat
equation where F : M −→M ′ ⊂ B ⊂ V = RN :

dFt
dt

= −∆Ft + Γ(Ft)(∇Ft)2

We have proved that the solution exists in short-time and is smooth whenever it exists. We will
now establish long-time existence using continuity method: we will show that if the solution
exists on [α, ωn] where ωn is an increasing sequence to ω, then the solution exists on [α, ω]. We
then apply short-time existence to gain a small open interval where solution still exists. We
then conclude that the solution exists globally on [α,+∞) since this interval is connected.

The crucial step to prove that the solution can be extended on [α, ω] is to uniformly bound
all of its derivatives in time of evolution [α, ω). These estimates will also be useful to justify
the convergence of Ft in C∞(M) to a smooth function F∞ which will eventually be a harmonic
map from M to M ′.

Recall that we proved in Corollary 18.1, under the hypothesis of negative curvature, the
boundedness of ‖Ft‖W 2,2(M) by a constant C depending only on curvatures of M,M ′ and the
initial total energies. Since dFt

dt
relates to spatial derivatives of F by the nonlinear heat equation,

it is easy to see that ‖Ft‖W 2,2(M×[τ,τ+δ]) is bounded by a constant independent of τ . We will
denote W k,p(M × [β, γ]) by W k,p([β, γ]).

Theorem 31 (W 2,2-boundedness). Suppose Riem(M ′) ≤ 0. There exists a constant C depend-
ing only on δ, the metrics and initial total energies such that

‖F‖W 2,2(τ,τ+δ) ≤ C for all α ≤ τ < ω − δ.
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4. Global existence for nonlinear heat equation

Proof. Since

‖F‖2
W 2,2([τ,τ+δ]) ≤

∫ τ+δ

τ
‖Ft‖2

W 2,2(M)dt+ 2
∫ τ+δ

τ
‖∆Ft‖2

L2 dt+ 2
∫ τ+δ

τ

∥∥∥Γ(Ft)(∇Ft)2
∥∥∥2

L2
dt

The first term and the second term are bounded by C2δ, the third one, since Γ(Ft) is bounded,
by C2δ where C is a constant only depending on the metrics and initial total energies.

The estimates of higher derivatives of F will be established in the same strategy as the
bootstrap: first in W 2,p for all p then in W k,p for all k, p, then in C∞.

4.1 Estimate of higher derivatives.

Lemma 32 (W 2,p-boundedness). Suppose Riem(M ′) ≤ 0. For all p ∈ (1,+∞), there exists
a constant C > 0 depending only on δ, p, the metrics and initial energies such that for all
α + δ ≤ τ ≤ ω − δ:

‖F‖W 2,p([τ,τ+δ]) ≤ C

Proof. Applying Gårding Inequality to the parabolic equation AF = Γ(F )(∇F )2 where A :=
∂
∂t

+ ∆ is the heat operator, one has

‖F‖W 2,p([τ,τ+δ]) ≤ C
(
‖Γ(F )(∇F )2‖Lp([τ− δ3 ,τ+δ]) + ‖F‖W 2,2([τ− δ3 ,τ+δ])

)
The second term of RHS is already bounded by applying Theorem 31 to 4δ

3 . For the first term:∥∥∥Γ(F )(∇F )2
∥∥∥
Lp([τ− δ3 ,τ+δ])

≤ C(M ′)‖|∇F |2‖Lp([τ− δ3 ,τ+δ]) = C(M ′)‖e(F )‖Lp([τ− δ3 ,τ+δ]).

Recall that by Theorem 14, the potential density satisfies de
dt

+ ∆e − Ce ≤ 0 for certain
constant C depending only on the metric of M . By Maximum principle (Theorem 25), one has
e ≤ ψτ where ψτ is the solution of

d
dt
ψτ + ∆ψτ − Cψτ = 0

ψτ
∣∣∣
τ− δ2

= e
∣∣∣
τ− δ2

We apply Gårding Inequality again for ψτ and obtain

‖e(F )‖Lp([τ− δ3 ,τ+δ]) ≤ ‖ψτ‖Lp([τ− δ3 ,τ+δ]) ≤ C‖ψτ‖L1([τ− δ2 ,τ+δ]). (4.1)

Now apply L1-Comparison Theorem 27 to ψτ , one has

‖ψτ‖L1([τ− δ2 ,τ+δ]) ≤
∫ 3δ/2

0
‖ψτ

∣∣∣
τ− δ2
‖L1eBtdt ≤

∫ 3δ/2

0
eBtdt.‖e

∣∣∣
τ− δ2
‖L1 ≤ C. (4.2)

The lemma follows from (4.1) and (4.2).
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4.2. Global existence for nonlinear heat equation.

We can now estimate higher order derivatives.

Theorem 33 (W k,p-boundedness). Suppose Riem(M ′) ≤ 0. For all p ∈ (1,+∞) and k < +∞,
there exists C depending only on k, p, the metrics and initial energies such that

‖F‖Wk,p([τ,τ+δ]) ≤ C

for all α + δ ≤ τ ≤ ω − δ.

Proof. Applying Gårding Inequality to the equation dF
dt

+ ∆Ft = Γ(F )(∇F )2 then Regularity
estimate for the quadratic term (Theorem 28), one has for ε� δ:

‖F‖Wk,p([τ,τ+δ]) ≤ Cε
(
‖F‖W 2,p([τ−ε,τ+δ]) + ‖Γ(F )(∇F )2‖Wk−2,p([τ−ε,τ+δ])

)
≤ Cε

(
1 + C

(
1 + ‖F‖W s,q([τ−ε,τ+δ])

)q/p)
as long as k− 1 < s and 1

p
> k

s
.1
q
. Therefore if ‖F‖W s,q([τ,τ+δ]) ≤ C(δ, s, q) for all β ≤ τ ≤ ω− δ

and q ∈ (1,+∞), we just proved that

‖F‖Wk,p([τ,τ+δ]) ≤ C(ε, k, p)

for all

β + ε ≤ τ ≤ ω − δ
k < s+ 1, p ∈ (1,+∞)

since ‖F‖W s,q([τ−ε,τ+δ]) ≤ 2C(δ, s, q).

One can then conclude by induction on k, with step 1
2 , starting with k = 2 and ε = δ

2
divided by 2 after each induction step.

4.2 Global existence for nonlinear heat equation.
Theorem 34 (Global existence). Suppose Riem(M ′) ≤ 0. The solution of nonlinear heat
equation

dF

dt
= −∆F + Γ(F )(∇F )2 (4.3)

with smooth initial condition exists globally for all time t > α.

Proof. Let Fn be a sequence of solution of (4.3) on [α, ωn] with ωn increasing to ω then they
coincide by uniqueness of the solution. As discussed in the beginning of this part, it is sufficient
to prove that the solution extends to [α, ω]. Let F be the solution on [α, ω) such that F

∣∣∣
[α,ωn]

=
Fn, then by Theorem 33, for all τ ∈ [α, ω − δ):

‖Du
tD

v
xF‖L∞(M×[τ,τ+δ]) ≤ CSobolev‖Du

tD
v
xF‖Wk,p(M×[τ,τ+δ]) ≤ CSobolev.C(k, p, δ)

where, if we choose k sufficiently large, CSobolev is the constant of Sobolev imbeddingW k,p(M×
[0, δ]) ↪→ C(M × [0, δ]) and C(k, p, δ) is the constant provided by Theorem 33.
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4. Global existence for nonlinear heat equation

So all partial derivatives of F are uniformly bounded on [α, ω). This proves that F extends
to a solution on [α, ω]. In fact F

∣∣∣
τ

:= F
∣∣∣
M×{τ}

converges in C∞(M) as τ → ω, since

‖DαF
∣∣∣
τ
−DαF

∣∣∣
τ ′
‖L∞ ≤ max

‖β‖=‖α‖+1
‖DβF‖L∞ |τ − τ ′|.

We have just proved the first part of the following theorem.

Theorem 35 (Eells-Sampson). 1. LetM,M ′ be compact Riemannian manifolds with Riem(M ′) ≤
0. Then for every smooth map f0 : M −→M ′ ⊂ B ⊂ RN , the nonlinear heat equation

dft
dt

= τ(ft), for all t ≥ 0
f
∣∣∣
t=0

= f0,

admits a globally defined smooth solution ft. Moreover, all derivatives Dαft remain
bounded as t→ +∞.

2. For a suitable sequence {tn} increasing to +∞ the sequence {ftn} converges in C∞(M)
to a function f∞ with τ(f∞) = 0. Therefore any map f0 : M −→ M ′ is homotopic to a
harmonic map.

Proof. For any sequence {tn}, one can extract from {ftn}, since their derivatives are uniformly
bounded, a subsequence {ftni} converging in Ck(M,RN). By a diagonal argument, one can
extract from any sequence {ftn} a subsequence converging in C∞(M,RN) to f∞. Abusively
denote this subsequence by {ftn}, by Theorem 15

lim
n→∞

K(ftn) = lim
n→∞

∫
M
|τ(ftn)|2 = 0

Therefore τ(ftn)→ 0 in L2(M)⊕N . But also τ(ftn)→ τ(f∞) in C∞(M,RN), one has τ(f∞) =
0.
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Part III

Existence using Morse-Palais-Smale
theory
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Chapter 5

Minimal immersions of S2

5.1 Brief view of Sacks and Uhlenbeck’s strategy.

Let M and N be compact Riemannian manifolds (without boundary), M is a surface and N
is isometrically embedded in Rk. It was showed by Eells and Sampson [ES64] that if N is
negatively curved than any map from M to N is homotopic to a harmonic map. The idea
of Sacks and Uhlenbeck in [SU81] consists of (1) approximating the energy functional E by a
family Eα satisfying Palais-Smale condition, whose nontrivial critical values can be more easily
proved to exist and (2) trying to prove that the critical maps sα of Eα converge in C1-topology.

We will first review the general machinery of Morse-Palais-Smale theory and prove the
existence of sα. The convergence of sα in the case of surface is due to the facts that energy
functional E is a conformal invariant of M , in particular E is invariant by homotheties (i.e. E
remains unchanged when we zoom in and out), which allows us to justify the C1-convergence
(under conditions of N) except at finitely many points using a local estimate and a suitable
covering of M .

Sacks and Uhlenbeck used an extension result for harmonic map, in an elegant argument to
prove that if the above sequence {sα} fails to converge at a point, for a certain surface M , then
one has a nontrivial harmonic map from S2 to N . Therefore if such sequence {sα} from S2 to
N exists, for example when πk(N) is nontrivial for a certain k ≥ 2 then, whether sα converges
or not, there exists a nontrivial harmonic map from S2 to N .

Finally, the theory of branched immersion of surfaces by Gulliver-Osserman-Royden [GOR73]
can be applied to show that the harmonic map obtained this way is a conformal, branched,
minimal immersion of S2 to N .
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5. Minimal immersions of S2

5.2 General machinery by Morse-Palais-Smale.

5.2.1 Perturbed functionals Eα.

Let s : M −→ N ↪→ Rk be a map from a compact surface M to a compact Riemannian
manifold N isometrically embedded into Rk. Recall that the energy functional of s is given by
E(s) := 1

2
∫
M |ds|2dVM = 1

2
∫
M〈s∗gN , gM〉dVM . The perturbed energy functionals are

Eα(s) :=
∫
M

(
1 + |ds|2

)α
dV, α ≥ 1

We will suppose, by rescaling the metric gM of M that the volume of M is 1, so when α = 1,
E1 = 1 + 2E(s) is just the previously defined energy. Using (a + b)α ≥ aα + bα and Jensen’s
inequality, one has Eα(s) ≥ 1 + (2E(s))α for all α ≥ 1. Also, since we only interest in the case
α close to 1, let us also suppose that α from now on is smaller than 2.

By Sobolev embedding, one has W 1,2α(M,Rk) ⊂ C0(M,Rk) compactly for all α > 1.
It then makes sense to talk about W 1,2α(M,N) ⊂ C0(M,N) which consist of elements of
W 1,2α(M,Rk) ⊂ C0(M,Rk) whose image lies in N .

Theorem 36 (Palais). The spaces C∞(M,N) ⊂ W 1,2α(M,N) ⊂ C0(M,N), where α > 1, are
of the same homotopy type and the inclusions are homotopy equivalences. In particular, their
connected components are naturally in bijection.

We will also need the following version of Morse theory for function spaces, also developed
by R. Palais.

Theorem 37 (Morse theory for Banach manifolds). 1. If F is a C2 functional on a com-
plete C2 Finsler manifold L and F satisfies Palais-Smale condition then

(a) The functional F admits minimum on each connected component of L.

(b) If F has no critical value in [a, b] then the sublevel {F ≤ b} retracts by deformation
to the sublevel {F ≤ a}.

2. The pair (L, F ) = (W 1,2α(M,N), Eα) with α > 1 satisfies the condition of the first part.

By consequence, one has

Corollary 37.1 (Component-wise minimum of Eα). The minimum of Eα in each connected
component C of W 1,2α(M,N), α > 1 is taken by some sα ∈ C∞(M,N) and there exists B > 0
depending on the component C such that

min
C
Eα ≤ (1 +B2)α
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5.2. General machinery by Morse-Palais-Smale.

Proof. By Theorem 37, Eα admits minimum at sα on each component C of W 1,2α(M,N). By
writing down the Euler-Lagrange equation of Eα and apply regularity estimates, one can prove
that sα is actually smooth. By Theorem 36, the preimage of C by inclusion C∞(M,N) ⊂
W 1,2α(M,N) is a connected component C ′ of C∞(M,N) over which sα is the minimum of Eα.
Take B = supM |du| for an arbitrary element u ∈ C ′ and the conclusion follows.

Remark 10. Corollary 37.1 is trivialised when W 1,2α(M,N) is connected (for one α or equiv-
alently for all α). In this case, sα is a constant map and B = 0.

To establish a nontrivial analog of Corollary 37.1 in the case where the spaces of maps from
M to N are connected, we will have to look at the submanifold N0 ∼= N formed by constant
maps.

5.2.2 Tubular neighborhood of the submanifold of trivial maps.
Fix y ∈ N , considered as a constant maps in N0. We will summarise a few facts about the
tangent space of W 1,2α(M,N) at y.

Remark 11. 1. The tangent TyW 1,2α(M,N) can be identified with W 1,2α(M,TyN). The
subspace TyN0 contains constant maps from M to TyN .

2. The fiber Ny over y of the normal bundle N of N0 can be identified with

Ny =
{
v ∈ W 1,α(M,TyN) :

∫
M
vdV = 0

}
The exponential map on TW 1,2α(M,N) can be defined as follows:

e : TW 1,2α(M,N) −→ W 1,2α(M,N)
(s, v) 7−→

(
x 7→ exps(x) v(x)

)
where s ∈ W 1,2α(M,N) and v ∈ TsW 1,2α(M,N) is a W 1,2α vector field along s(x). With the
representation of normal bundle N as Remark 11, the restriction of e on N is given by

e
∣∣∣
N

: N −→ W 1,2α(M,N)

(y, v) 7−→
(
x 7→ expy(v(x))

)
where y ∈ N0 ∼= N and v ∈ W 1,2α(M,TyN).

Lemma 38. The restriction e
∣∣∣
N

of e on N is a local diffeomorphism mapping a neighborhood
of the zero-section of N onto a neighborhood of N0 in W 1,2α(M,N).

Proof. It can be calculated that

de(y,0)(a, v) = (x 7→ a+ v(x)) ∈ TyW 1,2α(M,N) = W 1,2α(M,TyN)

for a ∈ TyN and v ∈ Ny ⊂ W 1,2α(M,TyN). It is invertible since a is tangential to N0 and
v ∈ Ny is in the normal component. The Inverse function theorem applies.
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5. Minimal immersions of S2

5.2.3 Critical values of Eα.
The exponential map previously defined on the normal bundle of N0 in W 1,2α(M,N) allows us
to retract by deformation a small neighborhood of N0 to N0. We will prove that if the energy
Eα(s) is sufficiently close to 1 = Eα(N0) then s is sufficiently W 1,2α-close to N0 and hence can
be retracted to N0, in other words, E−1

α [1, 1 + δ] retracts by deformation to N0 = E−1
α (1).

Proposition 39. Given α > 1, there exists δ > 0 depending on α such that E−1
α [1, 1 + δ]

retracts by deformation to E−1
α (1) = N0.

Proof. Let s ∈ E−1
α [1, 1 + δ], using (a+ b)α ≥ aα + bα, one has

1 + δ >
∫
M

(1 + |ds|2)αdV > 1 +
∫
M
|ds|2αdV

therefore ‖ds‖L2α ≤ δ1/2α. By Poincaré-Wirtinger inequality, ‖s−
∫
M s‖W 1,2α ≤ Cδ1/4 where C

is the Poincaré-Wirtinger constant.
By Sobolev embedding, maxM |s −

∫
M s| ≤ Cα‖s −

∫
M s‖W 1,2α where the Sobolev constant

Cα can no longer be chosen uniformly in α→ 1. Fix an x0 ∈M , one has

dW 1,2α(s,N0) ≤ ‖s− s(x0)‖W 1,2α ≤
∥∥∥∥s− ∫

M
s
∥∥∥∥
W 1,2α

+
∣∣∣∣∫
M
s− s(x0)

∣∣∣∣ ≤ Cαδ
1/4

Now choose δ � 1 depending on α such that s is in the neighborhood of N0 given by Lemma
38, s can be written as

s(x) = e(y, v(x)) = expy v(x)

where y ∈ N0 and v ∈ W 1,2α(M,TyN) depend continuously on s ∈ W 1,2α(M,N). We can define
the deformation retraction by

σ : E−1
α [1, 1 + δ]× [0, 1] −→ E−1

α [1, 1 + δ]
(s, t) 7−→

(
x 7→ expy tv(x)

)
It is clear that σ is continuous and σ0 is a retraction. The only thing to check is that the image
of σ remains in E−1

α [1, 1 + δ] at all time. This can be checked by showing that d
dt
Eα(σt) ≥ 0,

hence Eα(σt) ≤ Eα(σ1) ≤ 1 + δ for all 0 ≤ t ≤ 1.

We will now prove the existence of nontrivial critical value of Eα in an interval (1, B) for a
certain B > 1 sufficiently big independently of α > 1.

Fix z0 ∈M and consider the map

p : C0(M,N) −→ N

s 7−→ f(z0)

then p is a fiber bundle and therefore is a Serre fibration. In fact fix q0 ∈ N then for all q ∈ N
near q0, there is a vector field vq supported in a small ball centered at q0 such that the flow of
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5.2. General machinery by Morse-Palais-Smale.

vq from time 0 to 1 turns q0 to q, i.e. Φvq
1
0(q0) = q, and that vq varies continuously in q. Then

any fiber p−1(q) can be identified with p−1(q0) using the flow of vq. We will denote by Ω(M,N)
the topological fiber of p.

We will use a few facts from algebraic topology, briefly summarised here.

Fact 1. 1. (Long exact sequence of homotopy) Let p : E −→ B be a fiber bundle of fiber
F = p−1(b0) 3 f0, then one has the following long exact sequence

. . .
∂ // πn(F ) ι∗ // πn(E) p∗ // πn(B) ∂ // πn−1(F ) // . . . // π0(E) // 0

where ι : F −→ E is the inclusion.

2. If p admits a global section s, then one has a retraction s∗ of p∗:

πn(E) p∗ // πn(B)
s∗
ll

hence p∗ is surjective and ∂ factors through 0, which gives us the short exact sequence

0 // πn(F ) ι∗ // πn(E) p∗ // πn(B)
s∗
ll // 0

where p∗ admits a retraction s∗, so the short exact sequence splits and we have

πn(E) ∼= πn(F )⊕ πn(B).

Now apply this result to the fiber bundle p : C0(M,N) −→ N of fiber Ω(M,N), which has
N0 as a global section, one obtains

πn(C0(M,N)) ∼= πn(N)⊕ πn(Ω(M,N)).

Theorem 40 (Nontrivial critical value of Eα). If C0(M,N) is not connected, or if Ω(M,N) is
not contractible, then there exists B > 0 such that for all α > 1, Eα has critical values in the
interval (1, (1 +B2)α).

In particular, if M = S2 and if the universal covering Ñ of N is not contractible then Eα
has critical values in (1, (1 +B2)α).

Proof. If C0(M,N) is not connected, one only needs to apply Corollary 37.1 to a connected
component of W 1,2α(M,N) not containing N0. We now suppose that C0(M,N) is connected
and Ω(M,N) is not contractible.

In this case, there exists n > 0 such that πn(Ω(M,N)) is nontrivial and contains a nonzero
element γ : Sn −→ Ω(M,N) which is not homotopic to any γ̃ : Sn −→ N0 in πn(C0(M,N)).

Choose B := maxθ∈Sn,x∈M |dγ(θ)(x)| then by definition

Eα(γ(θ)) ≤ (1 +B2)α ∀θ ∈ Sn, α > 1.

49/137



5. Minimal immersions of S2

If Eα has no critical value in [1 + δα
2 , (1 + B2)α] where δα is given by Proposition 39, then

by Theorem 37, E−1
α [1, (1 + B2)α] retracts by deformation to E−1

α [1, 1 + δα] which retracts by
deformation to E−1

α (1) = N0. But this means that γ is homotopic to a certain γ̃ ∈ πn(N),
which is a contradiction.

As an application, if M = S2 and the universal covering Ñ is not contractible then the long
exact sequence of homotopy for the bundle Ñ −→ N with fiber of dimension 0, gives

πn(Ñ) = πn(N), ∀n ≥ 2.

Since Ñ is simply-connected and not contractible, there exists n ≥ 2 such that 0 6= πn(Ñ) =
πn(N) = πn−2(Ω(S2, N)), where the last equality follows from definition of homotopy group.
The general argument applies.

5.3 Local results: Estimates and extension.
We will say that the map s : M −→ N is a critical point of Eα on a small disc D(R) ⊂M if s
satisfies the Euler-Lagrange equation of Eα (as functional on W 1,2α(M,N)) on D(R).

Remark 12. Rescaling (D(R), gM), where R� 1 and gM is ε-close to the Euclidean metric, to
the unit disc D one obtains a metric g̃M that is still ε-close to Euclidean metric. The curvature
of g̃M is R2 times smaller than that of gM .

If s : D(R) −→ N is a critical map of Eα on D(R), then the composition s̃ of s and the
rescaling operator D −→ D(R) satisfies the Euler-Lagrange equation of Ẽα = R2(1−α) ∫

D(R2 +
|ds̃|2)αdṼ where dṼ is the volume form of the rescaled metric g̃M . We will abusively use the
same notation for s̃ and s and regard s as a map on the unit disc D.

Lemma 41 (Sacks-Uhlenback’s Main estimate). For all p ∈ (1,+∞), there exists ε > 0 and
α0 > 1 depending on p such that if

• s : (D, g̃) −→ N is a critical map of Eα on D(R)

• E(s) < ε, 1 < α < α0

then
‖ds‖W 1,p(D′) < C(p,D′)‖ds‖L2(D), for all disc D′ b D

Remark 13. In fact α0, ε and C(p,D′) depend on the rescaled metric g̃ on D, but if R � 1
and g̃ is very close to Euclidean metric, then one can choose these parameters independently of
g̃.

A consequence of (the proof of) Lemma 41 is the following global result:
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5.4. Convergence of critical maps of Eα.

Theorem 42 (Critical maps of low energy are trivial). There exists ε′ > 0 and α0 > 1 such
that if

• s : M −→ N is critical map of Eα

• E(s) < ε′, 1 < α <α0

then s ∈ N0 and E(s) = 0.

We proved in the last section that, under certain algebraic topological condition on N , Eα
admits critical value vα ∈ (1, (1+B2)α). We now can conclude that, by Theorem 42, the critical
values vα are bounded away from 1, i.e. infα vα > 1.

We will also need the following extension theorem:

Theorem 43 (Extension of harmonic maps). If s : D \ {0} −→ N is a harmonic map with
finite energy E(s) <∞, then s extends to a smooth harmonic map s̃ : D −→ N .

5.4 Convergence of critical maps of Eα.

We proved in Theorem 40 that if C0(M,N) is not connected or if Ω(M,N) is not contractible,
then there exists a family {sα} of critical maps of Eα with bounded, nontrivial energy Eα(sα) <
B. Since

•
∫
M |dsα|2 ≤ (Eα(sα)− 1)1/α is bounded uniformly on α

• ‖sα‖L∞ is bounded by compactness of N .

the W 1,2(M,Rk)-norms of {sα} are bounded. By reflexivity of Sobolev spaces, there exists a
subsequence {sβ} weakly converging to s in W 1,2(M,Rk) with

‖s‖W 1,2 ≤ lim inf
β→1

‖sβ‖W 1,2

We do not know at this moment if the convergence is C0, or if s is continuous, or even if the
image of s remains in N . The following key lemma answer these questions on a small disc of
M in the case the energy of sα is small.

Lemma 44 (Key). There exists an ε > 0, in fact given by the Main estimate Lemma 41 with
p = 4, such that if

• sα : D(R) −→ N ⊂ Rk are critical maps of Eα in W 1,2α(D(R), N),

• E(sα) < ε and sα converges weakly to s in W 1,2(D(R),Rk),

then
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• the restriction of s on D(R/2) is smooth harmonic map with image in N ,

• sα → s in C1(D(R/2), N)).

Remark 14. There are two different ways to define convergence of a sequence sn to s in C1(Ω)
on an open set Ω:

1. The sequence sα and s extend to C1(Ω̄) and have finite norm maxΩ |s| + maxΩ |ds| and
maxΩ |sα|+ maxΩ |dsα| and

max
Ω
|sα − s|+ max

Ω
|ds− dsα| → 0.

In this case, we will say that sα converges to s in C1(Ω̄).

2. C1(Ω) is topologised by a family of seminorms ΓK : s 7−→ maxK |s| + maxK |ds| for
K b Ω. This makes C1(Ω) a Fréchet topological vector space. If the sequence sα converges
to s under this topology then we will say that sα converges uniformly to s on compacts of
Ω.

Proof. We consider sα and s as maps from the unit disc D to Rk, then by Main estimate Lemma
41 for p = 4, since E(sα) < ε, one has:

‖dsα‖W 1,4(D(1/2),Rk) ≤ C(4, D(1/2))‖dsα‖L2(D) = C(4, D(1/2))E(sα)1/2

So {sα} is bounded in W 1,4(D(1/2),Rk) which is embedded compactly into C1(D(1/2),Rk).
We now can prove that sα converges strongly to s in C1(D(1/2),Rk): If there was a sub-

sequence {sβ} whose restriction to D(1/2) remains C1-away from s, then by compactness of
W 1,4(D(1/2),Rk) ↪→ C1(D(1/2),Rk), we can suppose that {sβ} converges in C1 to a certain
s̄ 6= s on D(1/2). But as a subsequence of {sα}, {sβ} converges weakly to s on D, hence on
D(1/2), we than obtain a contradiction using the uniqueness of weak limit.

By considering the Euler-Lagrange equation and letting α → 0, one concludes that s is a
harmonic map from D(1/2) to N .

The global convergence of {sα} can be established by a well-chosen covering of M by small
balls or radius R.

Proposition 45. Let sα : M −→ N ⊂ Rk be critical maps of Eα on M such that sα converges
weakly to s in W 1,2(M,Rk) and E(sα) < B. Then there exists l = l(B,N) such that given any
m > 0, one can find a sequence {xm,1, . . . , xm,l} ⊂ M and a subsequence {sα(m)} of {sα} such
that

sα(m) −→ s in C1
(
M \

l⋃
i=1

D(xm,i, 2−m+1), N
)
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Proof. We cover M by finitely many balls D(yi, 2−m) such that each point is covered at most
h times by the bigger balls D(yi, 2−m+1). By Lemma 110, h can be chosen independently of m
as 2−m → 0.

Since ∑i

∫
D(yi,2−m+1) |dsα|2 < Bh, choosing l = dBh2ε e, we see that there are at most l balls

D(yα,i, 2−m+1) with centers depending on α, on which the energy E(sα) is less than ε. Passing to
a subsequence {sα(m)} of {sα}, we can suppose that {yα(m),i} converges to xm,i as {α(m)} → 1.
But since the points {yi} are of finite number and separated, yα(m),i ≡ xm,i eventually and we
can suppose that the bad balls D(yα(m),i) where energy of sα(m) surpasses ε are the same for
every sα(m).

Now apply Lemma 44 to the sequence {sα(m)} on all the other 2−m+1-balls, one sees that
{sα(m)} converges in C1 to s on all D(yi, 2−m) except those centered at xm,i. The conclusion
follows.

Using a diagonal argument, we can find a subsequence {sβ} of {sα} that converges to s
uniformly on compacts of M \ {x1, . . . , xl}.

Theorem 46 (Convergence of {sα}). Let sα : M −→ N ⊂ Rk be critical maps of Eα on M

such that sα converges weakly to s in W 1,2(M,Rk) and E(sα) < B. Then there exist at most
l points x1, . . . , xl in M , where l is given by Proposition 45, and a subsequence {sβ} of {sα}
such that

sβ −→ s in C1(M \ {x1, . . . , xl},Rk) uniformly on compacts.

Proof. By passing to a subsequence {mk} of {m}, we can suppose that {xm,i} converges to xi in
M . Choose the diagonal subsequence {sβ} from {sα(m)} that consists of sα(m)(am) where am is
sufficiently big such that α(m)(am) is increasing and ‖sα(m)(b)−sα(m)(c)‖C1(M\∪iD(xm,i,2−m+1) <

1
m

for all b, c ≥ am. Then the sequence {sβ} converges uniformly on compacts of M \ {x1, . . . , xl}
because {⋃iD(xm,i, 2−m+1)}m is an exhaustive family of compacts of M \ {x1, . . . , xl}.

Remark 15. With the same notation as Theorem 46,

1. The image s(M \ {x1, . . . , xl}) lies in N . Also, using the Euler-Lagrange equation, one
sees that s is a (smooth) harmonic map from M \ {x1, . . . , xl} to N .

2. Since E(s) ≤ ‖s‖2
W 1,2 ≤ lim infα→1 ‖sα‖2 < +∞, s

∣∣∣
M\{x1,...,xl}

extends to a harmonic
map s̃ : M −→ N . We can therefore suppose that the limit s of Theorem 46 is smooth
harmonic map on M and of image in N .

5.5 Nontrivial harmonic maps from S2.

We will now prove the existence of nontrivial harmonic maps from S2 to a compact Riemannian
manifold N satisfying the conditions of Theorem 40.

The following theorem does not suppose any condition on N .
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Theorem 47. Let M be a compact surface and sα be critical maps of Eα. Suppose that

• sα converges in C1 to s uniformly on compacts of M \ {x1, . . . , xl} but not on M \
{x2, . . . , xl}.

• E(sα) < B

Then there exists a nontrivial harmonic map s∗ : S2 −→ N .

Before proving the theorem, let us state its corollary.

Corollary 47.1 (Nontrivial harmonic map from S2). If the universal covering Ñ of N is not
contractible then there exists a nontrivial harmonic map s : S2 −→ N .

Proof. By Theorem 40 and Theorem 42, there exist critical maps sα : S2 −→ N of Eα corre-
sponding to critical values Eα(sα) in (1 + δ, B). We claim that {sα} cannot converge in C1(M)
to a trivial harmonic map s ∈ N0. In fact, if it did,

1 + δ ≤ lim
α→1

∫
M

(1 + |dsα|2)αdV =
∫
M

(1 + |ds|2)dV = 1

which is contradictory.
Therefore, we only have two possibilities:

• {sα} does not converge in C1(M) to s, then by Theorem 47, there exists a nontrivial
harmonic map s∗ : S2 −→ N .

• If {sα} converges in C1(M) to a certain s̃, then as argued above, s̃ is nontrivial.

In both cases, nontrivial harmonic map from S2 to N exists.

Let us now prove Theorem 47.

Proof of Theorem 47. If there is no C1 convergence near x1, we claim that:

Assertion 1. For all C > 0 and δ > 0, there exists α > 1 arbitrarily close to 1 such that

max
D(x1,2δ)

|dsα| > C.

Moreover, we can suppose that maxD(x1,2δ) |dsα| = maxD(x1,δ) |dsα|.

Suppose that was not the case, then there exist C, δ > 0 such that maxD(x1,2δ) |dsα| ≤ C for
all α > 1 sufficiently close to 1. Choose a radius R� δ such that∫

D(x1,R)
|dsα|2 ≤ πR2C2 < ε

It suffices to apply Key lemma 44 to see that sα → s in C1(D(x1, R/2)), hence sα converges to
s in C1(M \ {x2, . . . , xl}) uniformly on compacts. Moreover, since {dsα} converges uniformly
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to ds on D(x1, 2δ) \D(x1, δ), we can suppose, with α sufficiently close to 1, that the maximum
is actually attained in D(x1, δ).

Therefore, we can choose a sequence {Cn} increasing to +∞ and {δn} decreasing to 0, such
that Cnδn diverges to +∞ and there exists a sequence {αn} decreasing to 1 such that

|dsαn(yn)| := max
D(x1,δn)

|dsαn| = max
D(x1,2δn)

|dsαn| = Cn

We define

s̃αn : D(δnCn) −→ N

x 7−→ sαn(yn + C−1
n x)

then |ds̃αn(0)| = maxD(Cnδn) |ds̃αn| = 1.
Fix any large R < +∞, since Cnδn → +∞, s̃αn is eventually defined on D(R) and is a

critical point of Eαn with respect to a metric g̃n on D(R) converging to the Euclidean metric.
The energy E(s̃αn

∣∣∣
D(Cnδn)

, g̃n) = E(s̃αn
∣∣∣
D(yn,δn)

, gM) ≤ B.
We claim that Proposition 45 and Theorem 46 remain correct when M = D(R) and sα

are critical maps of Eα with respect to metrics g̃α converging to the Euclidean metric. To be
precise:

Assertion 2. Let s̃α : (D(R), g̃α) −→ N ⊂ Rk be critical maps of Eα such that

• sα converges weakly to s∗ in W 1,2(D(R),Euclid),

• E(sα) < B

then there exists at most l points {x1, . . . , xl} in D(R) and a subsequence {sβ} such that sβ
converges to s∗ in C1(D(R/2) \ {x1, . . . , xl},Rk) uniformly on compacts, and s∗ is harmonic in
D(R/2).

The two ingredients of the proof of Proposition 45 and Theorem 46 to be investigated are
the covering and the estimate from Lemma 41. For the estimates, we already remarked that
the parameters α0, ε, C(p,D′) of Lemma 41 can be chosen independent of the metric g̃α if they
are close to Euclidean. For the covering, the investigation is not on the constant h, which can
be chosen to be 3dimM , but on how small the radius of the covering balls must be, but Lemma
110 states that their size is dictated by the Ricci curvature and sectional curvature of g̃α, which
are also uniformly bounded.

Using Assertion 2, passing to a subsequence of {s̃αn} if necessary, we can suppose that
s̃αn → s∗ in C1(D(R),Rk). Note that there is no singular point where {s̃αn} fails to converge
because |ds̃αn| is bounded uniformly on D(R) (hence cannot explode as in Assertion 1). We
can also choose, by a diagonal argument, a subsequence of {s̃αn} that converges to s∗ in C1(R2)
uniformly on compacts.
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It is clear that s∗ : R2 −→ N is harmonic and nontrivial because

|ds∗(0)|Euclid = lim
αn→1

|ds̃αn(0)|g̃αn = 1.

Also, ∫
D(R)
|ds∗|2dE = lim

αn→1

∫
D(R)
|ds̃αn|2dVg̃α ≤ lim sup

α→1
2E(sα

∣∣∣
D(x1,2δn)

) < 2B

which means the energy of s∗ on R2 is bounded above by 2B.
Now since (R2,Euclid) is conformal to S2\{p}, s∗ can be seen as a harmonic map on S2\{p}

with the same (finite) energy. By Extension theorem 43, s∗ extends to a nontrivial harmonic
map from S2 to N .

Remark 16. 1. We can have a better estimate of E(s∗). For any R > 0, one has

E(s∗
∣∣∣
D(R)

) + E(s
∣∣∣
M\∪li=1D(xi,δn)

) ≤ lim sup
αn→1

[
E(sαn

∣∣∣
D(x1,δn)

) + E(sαn
∣∣∣
M\∪li=1D(xi,δn)

)
]

Let δ → 0 then R→ +∞, one has

E(s∗) + E(s) ≤ lim sup
α→1

E(sα).

2. The proof of Theorem 47 also gives a constraint on the image of s∗: since s∗(D(R)) ⊂
∪1<β<αsβ(D(x1, 2δ)) for all α arbitrarily close to 1 and δ arbitrarily small, one has

s∗(S2) ⊂
⋂
δ→0

⋂
α→1

⋃
1<β<α

sβ(D(x1, δ))

5.6 Minimal immersions of S2.
We use the following result:

Theorem 48 ([CG75], [GOR73], [ES64]). If s : S2 −→ N is a nontrivial harmonic map and
dimN ≥ 3, then s is a C∞ conformal, branched, minimal immersion.

The "minimal" part follows from [ES64], the "branched" part follows from [GOR73] and
the "conformal" part follows from [CG75] and the fact that there is no nontrivial holomorphic
quadratic differential on S2. Theorem 47 gives:

Theorem 49. If the universal covering Ñ of N is not contractible then there exists a C∞

conformal, branched, minimal immersion s : S2 −→ N .
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Appendix 1: Resolution of linear
equations on manifold
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Chapter 6

Interpolation theory and Sobolev
spaces on compact manifolds

6.1 Motivation

We will define a more general notion of Sobolev spaces on compact manifold than those in
[Aub98] and [Jos08], where Sobolev spaces on a (Riemannian) manifold W k,p(M) of dimension
n are defined for k ∈ Z≥0 and for uniform weight, meaning that a function f ∈ W k,p(M) is
supposed to be weakly differentiable up to order k in every variables x1, . . . , xn in each smooth
coordinates. The space W k,p(M) in this case can be defined by density with respect to a norm
involving derivatives ∂f

∂xα
.

Meanwhile, the suitable function spaces to solve parabolic equations are those whose reg-
ularity in time is half of that in space, i.e. we will solve parabolic equations on the Sobolev
spaces W k,p(M × T ) of functions k times regular in M and k/2 times regular in T . We cannot
always, (for example when k is odd) find a simple norm involving derivatives of f to define
W k,p by density. This generalisation will be done using Stein’s multipliers.

Another generalisation will be made is to allow the manifold to have boundary. Even when
we only want to solve parabolic equation on manifold M without boundary, the underlying
space is M × [0, T ] which has boundary. Moreover, we will have to discuss the notion of trace
in order to use the initial condition at t = 0.

In this part, all manifolds will be compact, with no given metric. This is not really a
generalisation since on compact manifolds, Sobolev spaces W k,p(M), as defined in [Aub98] and
[Jos08] set theoretically do not depend on the metric and (the equivalent class of) their norms
also independent of the metric.

We will mainly follow the discussion in [Ham75], where the author also works on manifold
with corner, i.e. irregular boundary. The corners, modeled by Rn−k × Rk

≥0, appear naturally,
for example at the boundary ∂M in t = 0. The extra effort to cover the case of corners is not
much (see [Ham75, page 50]) and essentially algebraic.
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6.2 Preparatory material
We will recall here basic elements of Fourier transform on the space of tempered distributions
and then we will have a quick review of interpolation theory.

6.2.1 Stein’s multiplier
Let X = Rn be the Euclidean space, coordinated by x1, . . . , xn and E = Rn, coordinated by
ξ1, . . . , ξn be the frequency domain of X. Recall that Fourier transform is an isomorphism in
the following three levels

1. The Schwartz space of rapidly decreasing smooth functions S(X) whose elements are
smooth and decrease more rapidly then any rational function. The Schwartz space are
topologized by the family of semi-norms |f |α,β = supX |xαDb

xf(x)|.

2. The space L2(X) of doubly-integrable functions.

3. The space of tempered distributions, i.e. the dual space S∗(X) of S(X) under the weak-*
topology given by S(X).

To simplify the notation, we use Dα
x =

(
1
i
∂
∂x1

)α1
. . .
(

1
i
∂
∂xn

)αn and P (D) = ∑
α cαD

α for any
polynomial P .

Recall that for any u ∈ S(X) and for any polynomial P , one has P̂ (D)u = P (ξ)û(ξ). This
can be extended to non-polynomial function of M(D) of D by

M̂(D)u := M(ξ)û(ξ)

where M is a slowly growing function, i.e. DαM(ξ) grows slower than certain polynomial as
|ξ| → ∞.

The following theorem give a criteria of the function M such that M(D) : S(X) −→ S(X)
extend to Lp(X) −→ Lp(X).

Theorem 50 (Stein). If for any primitive index α = (α1, . . . , αn), i.e. each αi being 0 or 1
(there are exactly 2n primitive indices), one has

|ξαDαM(ξ)| ≤ Cα

then M(D) extend to a bounded linear operator on Lp(X).

Definition 6. 1. A slowly growing function W on E with W (ξ) > 0 is called a weight if
for all primitive index α, one has

|ξαDαW (ξ)| ≤ CαW (ξ).
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2. The Sobolev space W k,p(X,W ) with respect to weight W , k ∈ R, 1 < p < ∞ is the
vector space

W k,p(X,W ) =
{
u ∈ S∗(X) : W (D)ku ∈ Lp(X)

}
normed by ‖u‖Wk,p = ‖W (D)ku‖Lp.

Example 4 (Weight given by Σ = (σ1, . . . , σn)). Note by σ := lcm(σ1, . . . , σn) then WΣ(ξ) =(
1 + ξ2σ1

1 + · · ·+ ξ2σn
n

)1/2σ
is a weight. We will only use weights of this type in our discus-

sion. The index Σ = (σ1, . . . , σn) is chosen according to the differential operator in the ellip-
tic/parabolic equation. In particular, for Laplace equation, one chooses Σ = (1, . . . , 1) and for
heat equation Σ = (1, 2, . . . , 2) where 1 is in the time component.

Remark 17. 1. If W1,W2 are weights then W1 + sW2,W1W2,W
s
1 (s > 0) are also weights.

2. The operator W (D) : W k+r, p(X,W ) −→ W k,p(X) is bounded.

3. Given another weight V (ξ) ≤ CW (ξ), by Stein’s criteria (Theorem 50) one has a bounded
embedding W k,p(X,W ) ↪→ W k,p(X, V ).

The Sobolev space W k,p(X,WΣ has a simple definition by density when σ | k. Given an
index α = (α1, . . . , αn), note by ‖α‖ := ∑n

i=1 αi
σ
σi
.

Theorem 51 (Equivalent norm when σ | k). If k > 0 and σ | k and 1 < p < ∞, then given
u ∈ S∗(X), one has

1. u ∈ W k,p(X) if and only if Dαu ∈ Lp(X) for all ‖α‖ ≤ k and the norm ∑
‖α≤k‖ ‖Dαu‖Lp

is equivalent to ‖u‖Wk,p.

2. u ∈ W−k,p if and only if there exists gα ∈ Lp such that u = ∑
‖α‖≤kD

αgα and ‖u‖W−k,p is
equivalent to

inf

 ∑
‖α‖≤k

‖gα‖Lp : u =
∑
‖α‖≤k

Dαgα


Example 5. 1. When σ1 = · · · = σn = 1, one has the familiar Sobolev spaces.

2. For (the weight of) heat equation, W 2,p can be defined by density using the norm

‖u(t, x)‖ =
∥∥∥∥∥∂u∂t

∥∥∥∥∥
Lp

+ ‖Du‖Lp + ‖Du‖Lp

where Lp stands for Lp(X × [0, T ]).
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6.2.2 Holomorphic interpolation of Banach spaces
The Interpolation theory is based on the following Three-lines theorem whose proof follows from
the classic Hadamard’s three-lines theorem (the case A = C) and the way we define complex
Banach spaces and holomorphic maps taking value there.

Theorem 52 (Three-lines). Let A be a complex Banach space and h : S = {0 ≤ Re z ≤ 1} ⊂
C −→ A be a holomorphic map, i.e. continuous and holomorphic in the interior such that h is
bounded at infinity, i.e. h(x+ iy)→ 0 as y →∞. Let M(x) := supy ‖h(x+ iy)‖ then one has

M(x) ≤M(1)xM(0)1−x

Let A0, A1 be complex Banach spaces such that

1. A0, A1 can be continuously embedded into a Hausdorff topological complex vector space
E such that the complex structures are compatible with each others, i.e. the linear
embeddings Ai ↪→ E preserve complex structures.

2. The intersection A0 ∩ A1 in E is dense in (Ai, ‖‖Ai) for i = 0, 1.

such (A0, A1) is called an interpolatable pair.
The norms of A0 ∩ A1 and A0 + A1 are defined such that the these spaces are Banach and

the diagram
0 // A0 ∩ A1 // A0 ⊕ A1 // A0 + A1 // 0 (6.1)

commutes and the arrows are continuous. By Open mapping theorem, this means that the
norm on A0 ∩ A1 is equivalent to ‖x‖A0∩A1 = ‖x‖A0 + ‖x‖A1 and the norm on A0 + A1 is
equivalent to ‖x‖A0+A1 = infx=x0+x1,xi∈Ai {‖x0‖A0 + ‖x‖A1}.

Remark 18. A pair (A0, A1) of Banach spaces may give different interpolatable pairs depending
how they are embedded into a common space E. It is not difficult to see that the data of inter-
polatable pair is uniquely determined by 2 complex Banach spaces U, V (which are eventually
A ∩B and A+B) and the diagram

0

��
A0

$$��

VV

0 // U //

;;

##

A0 ⊕ A1 //

��

UU

V // 0

A1

;;

��

UU

0

UU

(6.2)

in which
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1. All arrows are continuous and compatible with complex structures. The horizontal se-
quence is exact, the vertical sequence is exact and canonical.

2. The diagonal arrows from U to A0, A1 are injective and of dense image in A0, A1.

3. The maps composed by the diagonal arrows U → Ai → V are injective for i = 0, 1. Since
the two maps are additive inverse, it suffices to have injectivity for one of them.

In the language that we will use to solve linear equation, these properties of diagram (6.2)
are equivalent to the square

U //

��

A0

��
A1 // V

being exact.

The following construction will give a family of complex subspace Aθ of A0 +A1 containing
A0 ∩A1 for 0 ≤ θ ≤ 1 that interpolates A0 and A1 that satisfies the following properties, called
interpolation inequalities

Theorem 53 (Interpolation inequality for elements in the intersection). Let a ∈ A0 ∩A1 then
a ∈ Aθ and

‖a‖Aθ ≤ 2‖a‖θA1‖a‖
1−θ
A0

Theorem 54 (Interpolation inequality for operators). Given interpolatable pairs (A0, A1) and
B0, B1), and T a bounded linear operator T : A0 −→ B0 and T : A1 −→ B1 such that T is
well-defined on A0∩A1. Then T extends linearly and continuously to T : A0 +A1 −→ B0 +B1,
that is

0 // A0 ∩ A1 //

T
��

A0 ⊕ A1 //

T⊕T
��

A0 + A1 //

T
��

0

0 // B0 ∩B1 // B0 ⊕B1 // B0 +B1 // 0

(6.3)

Also, T defines a bounded operator T : Aθ −→ Bθ and

‖T‖L(Aθ,Bθ) ≤ 2‖E‖θL(A1,B1)‖E‖1−θ
L(A0,B0)

To define Aθ, let

H(A0, A1) :=
{
h : S −→ A0 + A1 : h is holomorphic, lim

|y|→∞
h(z) = 0, h(iy) ∈ A0, h(1 + iy) ∈ A1}

where, as above, S denotes the strip 0 ≤ Re z ≤ 1. Then H(A0, A1) is a Banach space with the
norm

‖h‖H(A0,A1) := sup
y
‖h(iy)‖A0 + sup

y
‖h(1 + iy)‖A1
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The space Aθ is defined set-theoretically as the space of all value in A0 +A1 that a function
h ∈ H(A0, A1) can take at θ ∈ [0, 1] ∈ S. Therefore, set-theoretically Aθ coincides with A0 and
A1 when θ = 0 and θ = 1. To define the norm on Aθ, let

Kθ(A0, A1) := {h ∈ H(A0, A1) : h(θ) = 0}

then Kθ(A0, A1) is a closed complex subspace of the Banach space H(A0, A1). Then Aθ :=
H(A0, A1)/Kθ(A0, A1) has the natural quotient norm inherited from H(A0, A1) and is still a
Banach space.

It is not difficult to see that the norm on Aθ coincides with the norm ‖ · ‖A0 , ‖ · ‖A1 when
θ = 0 or θ = 1

Theorem 53 follows from the this lemma when one takes h to be a constant, and is in
A0 ∩ A1.

Lemma 55. If h ∈ H(A0, A1) then ‖h(θ)‖Aθ ≤ 2M θ
1M

1−θ
0 where

M0 := sup
y
‖h(iy)‖A0 , M1 := sup

y
‖h(1 + iy)‖A1

Proof. The Aθ-norm of h(θ) only depends on the value of h at θ, one can therefore replace h
by a function of form hc,ε(z) = exp(c(z − θ) + εz2)h(z), then let ε→ 0 and choose the optimal
c, which is ec = M0/M1.

Theorem 54 follows from Theorem 53 and the very definition of quotient norm.

Remark 19. The optimal constant, as given by the proofs, is θ−θ(1− θ)θ−1 < 2

The interest of holomorphic interpolation theory comes from the fact that interpolation of
Sobolev spaces are still Sobolev spaces, which, together with Theorem 54 and Theorem 53,
gives a class of useful inequalities generally called interpolation inequalities.

Theorem 56 (Interpolation of Sobolev spaces). Let p, q ∈ (1,+∞) and k, l ∈ R and X = Rn.
Take

A0 := W k,p(X), A1 := W l,q(X)

then Aθ = W s,r(X) where

θl + (1− θ)k = s, θ
1
q

+ (1− θ)1
p

= 1
r

The holomorphic interpolation behaves predictably with direct sum and compact operators

Theorem 57. Let (A0, A1), (B0, B1) be interpolatable pairs and denotes by (A ⊕ B)θ be the
interpolation of A0 ⊕ B0 and A1 ⊕ B1 then one has (A ⊕ B)θ ∼= Aθ ⊕ Bθ by a canonical
isomorphism.
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Proof. The set-theoretical bijection is easy to see: note that there is a natural inclusion (A ⊕
B)θ ↪→ Aθ⊕Bθ, which is also a bijection because H(A0⊕B0, A1⊕B1) = H(A0, A1)⊕H(B0, B1).

The most difficult part is to know what we mean by isomorphism. In fact the two norms
(the interpolation norm and the direct-sum norm) do not coincide, but they are equivalent.
One can prove, with basic sup-inf analysis that

1
2‖ · ‖Aθ⊕Bθ ≤ ‖ · ‖(A⊕B)θ ≤ ‖ · ‖Aθ⊕Bθ

Theorem 57 can be generalised to the following result.

Theorem 58 (*). Let (X0, X1) and (Y0, Y1) be interpolatable pairs. Suppose that there are
inclusion X0 ↪→ Y0 and X1 ↪→ Y1 with closed images in Y0 and Y1 respectively and the inclusions
agree on X0 ∩X1 as mappings from X0 ∩X1 to Y0 + Y1. Moreover, suppose that the image of
X0 +X1 in Y0 + Y1 is closed. Then there is a natural inclusion Xθ ↪→ Yθ with closed image in
Yθ

Remark 20. 1. The condition X0 + X1 ↪→ Y0 + Y1 being of closed image is redundant if
X1 ↪→ X0 and Y1 ↪→ Y0, as in the case of interpolation of certain Sobolev spaces on
manifolds. In general, one can also check that this condition holds for the maps ιk,p and
ιl,q in Definition 7 of Sobolev spaces using the fact that they admit left-inverse given by
{ψ̃i}. See Remark 23.

2. If one has two exact sequences

0 −→ Xi −→ Yi −→ Zi −→ 0, i = 0, 1 (6.4)

whose arrows commute with ones from the intersection and ambient spaces of interpolat-
able pairs (X0, X1), (Y0, Y1), (Z0, Z1) then, since the images of Xi −→ Yi being kernel of
Yi −→ Zi are closed, one has the inclusion for interpolation spaces, also of closed image:

0 −→ Xθ −→ Yθ, 0 ≤ θ ≤ 1.

3. In particular, if the sequences in (6.4) split, meaning that one can find a retraction 0 −→
Zi −→ Yi, then by applying the theorem for the retractions, one sees that the interpolation
sequence extend to Zθ, i.e.

0 −→ Xθ −→ Yθ −→ Zθ −→ 0

and also splits, meaning Yθ ∼= Xθ ⊕ Zθ. Applying this results to the split-exact sequences

0 −→ Ai −→ Ai ⊕Bi −→ Bi −→ 0

one then obtains Theorem 57.
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6. Interpolation theory and Sobolev spaces on compact manifolds

Proof. The inclusion Xθ ↪→ Yθ is natural and due to the fact that H(X0, X1) ⊂ H(Y0, Y1). The
equivalence of the interpolation norm Xθ and the norm inherited from Yθ on Xθ requires more
than a simple sup-inf analysis as in the proof of Theorem 57 since H(X0, X1) is strictly included
in H(Y0, Y1). What we can say is that the interpolation norm Xθ dominates the interpolation
norm of Yθ, since it involves the infimum on the smaller set. In other words, it means that the
inclusion Xθ ↪→ Yθ is continuous. It remains to check that the image of Xθ ↪→ Yθ is closed.

Since
Xθ

// Yθ

H(X0, X1)/Kθ(X0, X1) H(Y0, Y1)/Kθ(Y0, Y1)

H(X0, X1) //

OOOO

H(Y0, Y1)

OOOO

it suffices to show that the image H(X0, X1) ↪→ H(Y0, Y1) is closed, meaning if H(X0, X1) 3
hn → h in H(Y0, Y1), then h must take value in X0 + X1. This is easy to verify on ∂S: By
the equivalence of the norm on Xi and the restricted norm from Yi, i = 0, 1, one sees that
h(iy) ∈ X0 and h(1 + iy) ∈ X1.

Since X0 + X1 is closed in Y0 + Y1, any holomorphic map H(Y0, Y1) 3 f : S −→ Y0 + Y1

passes holomorphically to the quotient S −→ (Y0 +Y1)/(X0 +X1). The fact that h takes value
in X0 +X1 follows from Maximum modulus principle for holomorphic functions.

Theorem 59 (Interpolation of compact embedding). If A1 ↪→ A0 is a compact embedding,
then A1 ∼= Aθ∩A1 ↪→ Aθ is a compact embedding where the first ∼= denotes the same space with
equivalent norms.

Proof. It follows from Theorem 53:

‖xm − xn‖Aθ ≤ 2‖xm − xn‖1−θ
A0 ‖xm − xn‖

θ
A1

Hence if {xn} is a bounded sequence in A1, it converges in A0 and therefore Aθ.

The previous Theorem 53, together with Theorem 56 also gives a proof of Kondrachov’s
Theorem, that is the embedding W k,p(X) ↪→ W l,p(X) is compact if k > h >≥ 0. This follows
from the following 2 remarks

1. The case l = 0 and k � 1 follows from the embedding W k,p ↪→ C1 and Ascoli’s theorem.
Hence by Theorem 53, one has the compactness embedding if k � 1 and l < k.

2. For the case of small k, note that

W k+r,p(X)� W k,p(X) : v 7−→ W (D)ru
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6.3. Sobolev spaces on compact manifold without boundary

is surjective and any u ∈ W k,p(X) can be lifted to an element ũ ∈ W k+r,p(X) of the same
norm. In fact, if W (ξ)kû ∈ Lp then choose ũ such that ̂̃u = W (ξ)−rû. Kondrachov’s
theorem follows from the diagram:

W k+r,p(X) // //
� _

compact
��

W k,p(X)� _

��
W h+r,p(X) // //W h,p(X)

Remark 21. The advantage of this proof is that it is valid for weighted Sobolev spaces over
manifolds.

6.3 Sobolev spaces on compact manifold without bound-
ary

Let M be a compact manifold without boundary. We fix a finite atlas of M by chart ϕi : M ⊃
Ui −→ Vi ⊂ Rn such that the transitions ϕij = ϕi ◦ ϕ−1

j : Vj −→ Vi are of strictly positive and
bounded derivatives, i.e. C(α)−1 ≤ Dαϕij ≤ C(α) for all indices α. We will called such atlas a
good atlas. One can always obtain such atlas by shrinking a bit each chart of a given atlas of
M . Let ψi be a partition of unity subordinated to {Ui}

Definition 7. 1. The Sobolev spaces W k,p(M) is defined as

W k,p(M) :=
{
f ∈ S(M)∗ : (ψif) ◦ ϕ−1

i ∈ W k,p(Rn)
}

with the norm
‖f‖Wk,p =

∑
i

‖(ψif) ◦ ϕ−1
i ‖Wk,p(Rn)

2. Weighted Sobolev spaces can be defined when M has a foliation structure, i.e. M is locally
modeled by 0 ( F1 ( · · · ⊂ Fk ( Rn where Fi are vector subspace of Rn of dimension
0 < n1 < · · · < nk < n respectively and Fk are preserved by the transition maps ϕij, for
example when M is a product of manifolds of lower dimension. Then the above definition
extends to weighted Sobolev spaces with weight σ1 = · · · = σn1, σn1+1 = · · · = σn2 , . . .

σnk+1 = · · · = σn.

Remark 22. 1. One can define S(M)∗ as the dual space of S(M) = C∞(M) under Schwartz
topology with respect to any metric, because by compactness any two metrics on M are
comparable. The distributions ψif are tempered because they are compactly supported.
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6. Interpolation theory and Sobolev spaces on compact manifolds

2. One can identify C∞(M) with a subspace of S∗(M) that is contained in any Sobolev
space W k,p(M) by fixing a Riemannian metric g on M . The map C∞(M) ↪→ S∗(M)
may depend on g, but its image does not. Similarly, one can also identify an element of
W k,p(Rn) supported in Vi with an element in W k,p(M).

3. If one uses another good atlas U ′i or a different partition of unity, one obtains the same
set W k,p(M) and an equivalent norm. To see this, let us call two good atlas compatible
if their union is also a good atlas, then the statement holds for two compatible atlas by
comparing their union. Moreover, for any two arbitrary good atlas {Ui}, {U ′j}, one can
find a good atlas compatible with both of them by shrinking their union.

By definition, one has an inclusion ι : W k,p(M) ↪→ ⊕
iW

k,p(Rn). Also ι is of closed image
because one can find a projection π : ⊕

iW
k,p(Rn) −→ W k,p(M) with π ◦ ι = Id. In fact, let

ψ̃i be functions supported in Ui that equal 1 in the support of ψi, then

π : g 7→
∑

ψ̃i.(g ◦ ϕi)

works. The continuity of π follows from straight-forward calculations.
The closedness of image of ι is equivalent to the fact that W k,p(M) is complete.

Remark 23. Although ι preserves the norm of W k,p(M) and has a right-inverse, it is far from
being an isomorphism (it is not surjective). Each summand of an element in the image of ι
tends to 0 on the boundary of Vi (take k � 1 then everyone is continuous by Sobolev embedding,
there is no subtlety in what we mean by "tends to 0"). [Ham75, page 54] seems to claim that ι
is an isomorphism and apply Theorem 57 repeatedly to deduce Theorem 56 for Sobolev spaces
on manifold, then the Sobolev embedding W k,p ↪→ C l(M) and Kondrachov’s theorem.

The above results are true and the correction is not difficult (use Theorem 58).

From the remark, one has

Theorem 60 (Interpolation of Sobolev spaces on manifold). Theorem 56 holds for Sobolev
spaces W k,p(M) on compact manifold M .

6.4 Sobolev spaces on compact manifold with boundary

In this part, we will define the Sobolev spaces W k,p(M/A) where k ∈ R, p ∈ (1,∞) and M is a
manifold with boundary and A is union of connected components of ∂M the boundary of M .
These spaces contain W k,p(M) "functions" who vanish on A. The motivation is that we will
later take M = M ′ × [0, T ] where M ′ is a manifold without boundary where we want to solve
heat equation, and the natural A would be M × {0}. We also want that the new definition
coincides with the case of no boundary when A = ∅
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6.4. Sobolev spaces on compact manifold with boundary

Suppose that we already define the Sobolev spaces onX×Y + whereX = Rn and Y + = R≥0,
that is the space W k,p(X × Y +) = W k,p(X × Y +/∅) and W k,p(X × Y +, X × {0}). Then then
we define the space W k,p(M/A) in analog of Definition 7 as follows

Definition 8. 1. The Sobolev spaces W k,p(M/A) where A is a connected component of
∂M is defined as

W k,p(M/A) :=
{
f ∈ S(M)∗ : (ψif) ◦ ϕ−1

i ∈ W k,p(Ri/Ai)
}

where Ai = ϕi(Ui∩A) and Ri is the Euclidean space containing ϕ(Ui), that is either Rn+1

when Ai = ∅ or Rn × R≥0 when Ai ⊂ Rn × {0}. The norm is given by

‖f‖Wk,p =
∑
i

‖(ψif) ◦ ϕ−1
i ‖Wk,p(Ri/Ai)

2. As before, weighted Sobolev spaces can be defined when M has a foliation structure com-
patible with its boundary.

The fact that different good atlas and different partition of unity defines the same space
W k,p(M/A) (as a subset of S∗(M)) with equivalents norm comes from the following lemma,
which is just a formulation of arguments in the case of no boundary. For the proof, one reduces
the lemma, by interpolation inequality, to the case k is a multiple of σ and use the criteria in
Theorem 51 and the boundedness of derivative of the transition map.

Lemma 61. Let (U,AU) and (V,AV ) be subsets of (X×Y +, X×{0}) and ϕV U : (U,AU) −→
(V,AV ) being a diffeomorphism between U and V mapping AU ⊂ ∂U to AV ⊂ ∂V bijectively
and of bounded derivatives. Let 0 ≤ ψ ≤ 1 be a smooth function compactly supported in V .
Then the linear mapping T : S∗(X×Y +/X×{0}) −→ S∗(X×Y +/X×{0}) : f −→ ψ.(f ◦ϕ−1

V U)
extends to a bounded operator from W k,p(U/AU) −→ W k,p(V,AV ).

We will sketch rapidly the (well known) ideas to define Sobolev spaces on half-plan and the
trace operator in the next sections.

6.4.1 Sobolev spaces on half-plan
In this section, the Sobolev spaces on X × Y or X × Y + are defined with weight (σ1, . . . , σn, ρ)
and σ := lcm(σ1, . . . , σn, ρ).

Smooth extensions

Let S(X × Y +) denote the space of smooth, rapidly decreasing functions (and all of their
derivatives) onX×Y + and S(X×Y +/0) denotes the subspace of functions who vanish, together
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6. Interpolation theory and Sobolev spaces on compact manifolds

with all their derivatives, at X×{0}. Similar definition for S(X×Y −) and S(X×Y −/0). The
following exact sequence is obvious and the arrows are continuous under Schwartz topology.

0 // S(X × Y −/0) Z− // S(X × Y ) C+ // S(X × Y +) // 0 (6.5)

where Z− be the extension by 0 and C+ be the cut-off operator.
It is however not obvious that the sequence in (6.5) splits. Algebraically this is equivalent

to the fact that C+ admits a retraction, that we will note by E+ since it is in fact an extension
to the negative half-plan, which is continuous under Schwartz topology. The construction of
E+ is as follows

E+ : S(X × Y +) −→ S(X × Y )

f 7−→

(x, y) 7−→

f(x, y), if y ≥ 0∫∞
0 ϕ(λ)f(x,−λy)dλ, if y < 0


where the difficult part is the choice of ϕ, which is resolved by the following lemma.

Lemma 62. There exists a smooth function ϕ : R≥0 −→ R such that
∫+∞

0 xn|ϕ(x)|dx <

∞ ∀n ∈ Z and ∫ +∞

0
xnϕ(x)dx = (−1)n ∀n ∈ Z \ {0}

Moreover, ϕ( 1
x
) = −xϕ(x) for all x > 0.

In fact, the function

ϕ(x) = e4

π
.
e−(x1/4+x−1/4) sin(x1/4 − x−1/4)

1 + x

works. The continuity of operator E+ comes from these properties of ϕ and basic justifica-
tion of Lebesgue’s Dominated convergence. The projection R− of Z− in the sequence (6.5) is
constructed algebraically:

R− S(X × Y ) −→ S(X × Y −/0)
f 7−→ f − E+C+f

which is also continuous in Schwartz topology. To resume, one has the split exact sequence

0 // S(X × Y −/0)
Z− --

S(X × Y )
C+ ..

R−
nn S(X × Y +) //

E+
nn 0 (6.6)

and a similar sequence for S(X × Y +/0 and S(X × Y −) with operators Z+, C−, E− and R+.
Also, note that

〈E+f, g〉 = 〈f,R+g〉 (6.7)

where the first pairing is on S(X×Y )×S(X×Y ) and the second is on S(X×Y +)×S(X×Y +/0).
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6.4. Sobolev spaces on compact manifold with boundary

Remark 24. 1. The two pairings satisfy 〈Dαu, v〉 = (−1)|α|〈u,Dαv〉.

2. The second pairing gives two natural identifications

S(X × Y +/0) ↪→ S∗(X × Y +), S(X × Y +) ↪→ S∗(X × Y +/0)

while the first pairing gives S(X × Y ) ↪→ S∗(X × Y ).

3. (6.7) shows that E+ and R+ are adjoint, strictly speaking E+ is the restriction of R∗+,
that is

S(X × Y +)� _

��

E+ // S(X × Y )� _

��
S∗(X × Y +/0)

R∗+ // S∗(X × Y )

Similarly. since 〈C−f, g〉 = 〈f, Z−g〉, one has

S(X × Y −/0)� _

��

Z− // S(X × Y )� _

��
S∗(X × Y −)

C∗− // S∗(X × Y )

To resume, one can extend the sequence in (6.5) to the following diagram

0 // S(X × Y −/0)� _

��

Z− -- S(X × Y )� _

��

C+ ..

R−
nn S(X × Y +)� _

��

//

E+

mm 0

0 // S∗(X × Y −)
C∗− ..

S∗(X × Y )
Z∗+ ..

E∗−

nn S∗(X × Y +/0) //

R∗+

nn 0

(6.8)

We will define Sobolev spaces W k,p(X × Y −/0) and W k,p(X × Y +) so that they form an
intermediate row in diagram. Since the center cell S(X × Y ) ⊂ W k,p(X × Y ) ⊂ S∗(X × Y ) is
already defined, there is only one natural way to do this.

Definition 9. 1. The Sobolev space upper on half-plan is

W k,p(X × Y +) :=
{
f ∈ S∗(X × Y +/0) : ∃g ∈ W k,p(X × Y ), f = Z∗+g

}
with norm ‖f‖Wk,p(X×Y +) = infg ‖g‖Wk,p(X×Y ).

2. The Sobolev space on lower half-plan with vanishing trace

W k,p(X × Y −/0) :=
{
f ∈ S∗(X × Y −) : C∗−f ∈ W k,p(X × Y )

}
with the induced norm ‖f‖Wk,p(X×Y −/0) := ‖C∗−f‖Wk,p(X×Y ).
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Remark 25. 1. In other words, W k,p(X × Y −/0) = C∗−
−1(W k,p(X × Y )) and W k,p(X ×

Y +) = Z∗+(W k,p(X × Y )) and they are given by the induced norm and the quotient norm
of W k,p(X × Y ) respectively. The operator C∗− and Z∗+ are by definition bounded under
Sobolev norm.

2. The topology of W k,p(X×Y ) being finer than the induced of weak-* topology from S∗(X×
Y ), the restricted operator Z∗+

∣∣∣
Wk,p

: W k,p(X×Y ) −→ S∗(X×Y +/0) is continuous, hence
kerZ∗+

∣∣∣
Wk,p
⊂ W k,p(X×Y ) is a closed subspace of the Banach spaceW k,p(X×Y ). But this

is also the image by C∗− ofW k,p(X×Y −/0). ThereforeW k,p(X×Y −/0) andW k,p(X×Y +)
are Banach spaces.

3. Idem for W k,p(X × Y +/0) and W k,p(X × Y −).

Theorem 63. 1. For all k ∈ R and p ∈ (1,∞), the three lines of the following diagram are
split-exact and the arrows of the second lines are bounded operators under Sobolev norms.

0 // S(X × Y −/0)
Z− --

� _

��

S(X × Y )
C+ ..

R−
nn � _

��

S(X × Y +) //

E+

mm � _

��

0

0 //W k,p(X × Y −/0)� _

��

C∗− ..
W k,p(X × Y )� _

��

Z∗+ ..

E∗−

oo W k,p(X × Y +) //

R∗+

nn � _

��

0

0 // S∗(X × Y −)
C∗− .. S∗(X × Y )

Z∗+ ..

E∗−

nn S∗(X × Y +/0) //

R∗+

nn 0

(6.9)

2. The subspaces S(X×Y −/0) and S(X×Y +) are dense in W k,p(X×Y 0/0) and W k,p(X×
Y +) respectively.

3. Interpolation theorem 56 holds for W k,p(X × Y −/0) and W k,p(X × Y +).

Proof. The commutativity of the diagram is purely algebraic. The continuity of C∗− and Z∗+
in the W k,p-row follows from the definition of norms in this row. The only non-trivial part is
the continuity of E∗− and R∗+ in the W k,p-row, and it suffices to prove that C∗−E∗− and R∗+Z∗+
are bounded as automorphism of W k,p(X × Y ). This follows from direct computation of these
norm in the case σ | k ∈ R and interpolation inequality (Theorem 54) for intermediate k.

Once the continuity of E∗− and R∗+ is established, the density of S(X × Y −/0) follows
straight-forwardly and we see that W k,p(X × Y −/0) and W l,p(X × Y −/0) are interpolatable
(the two spaces share a dense subspace). Theorem 58 applies and shows that Theorem 56 holds
for W k,p(X × Y −/0).

Idem for the side of S(X × Y +) ⊂ W k,p(X × Y +).

Remark 26. By dualising the diagram (6.9) and using the fact that the dual space of W k,p(X×
Y ) is W−k,p′(X×Y ), one can prove that the dual space of W k,p(X×Y +) is W−k,p′(X×Y +/0).
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6.4. Sobolev spaces on compact manifold with boundary

Functoriality of Dx and equivalent definitions

The following discussion appeared as 4 lemmas in [Ham75, page 38-42] in the proof of Vanishing
trace theorem 65. I think these ideas can be presented without much computation.

Note that the weight W (ξ, η) =
(
1 + ξ2σ1

1 + · · ·+ ξ2σn
n + η2ρ

)1/2σ
is comparable to W (ξ) +

W (η) where
W (ξ) =

(
1 + ξ2σ1

1 + · · ·+ ξ2σn
n

)1/2σ
, W (η) =

(
1 + η2ρ

)1/2σ

and also W k(ξ, η) is comparable to W (ξ)k + W (η)k. Hence W (Dx)l : W k,p(X × Y ) −→
W k−l,p(X × Y ) is a bounded operator.

The vertical arrows in the following diagram are the vertical arrows of (6.9). The dashed
horizontal arrow indicates that it is established only in the center cells W k,p(X × Y ) −→
W k−l,p(X × Y ).

S − row

ww ((
W k,p − row

''

W (Dx)l //W k−l,p − row

vv
S∗ − row

(6.10)

We will see that the dashed arrow can be extended to a full arrow, that is 3 arrows between
the W k,p-row and W k−l,p-row that are compatible with the diagram (6.9).

One can construct W (Dx)l arrows from W k,p(X × Y −/0) −→ W k−l,p(X × Y −/0) and
W k,p(X × Y +) −→ W k−l,p(X × Y +) as adjoint of W (Dx)l on S(X × Y +) and S(X × Y +/0).
They are by definition continuous on the weak-* topology. It is easy to see that if we can prove
that these two W (Dx)l arrows commute with C∗−, E∗− and Z∗+, R∗+ on W k,p-row and W k−l,p-row,
then by the continuity of the W (Dx)l arrow from W k,p(X × Y ) −→ W k−l,p(X × Y ), these
W (Dx)l arrows are bounded in W k,p norm.

The two newW (Dx)l arrows commute with all "−→" arrows in theW k,p-row of (6.9), i.e. C∗−
and Z∗+, since for smooth functions, Dx commutes with Z− (extension by 0) and C+ (cut-off).

The fact that W (Dx)l commutes with the "←−" arrows, i.e. E∗− and R∗+ is due to:

S(X × Y +)
W (Dx)l
��

E+ // S(X × Y )
W (Dx)l
��

S(X × Y +) E+ // S(X × Y )

and S(X × Y )
W (Dx)l
��

R− // S(X × Y −/0)
W (Dx)l
��

S(X × Y ) R− // S(X × Y −/0)

Remark 27. There is no functoriality of Dy since for y < 0

Dl
yE+f(x, y) =

∫ ∞
0

(−λ)lϕ(λ)Dl
yf(x,−λy)dλ 6= E+D

l
yf(x, y)

meaning that the Dy does not commute with E+.
However Dl

yE+f ∈ Lp(X × Y ) if and only if E+D
l
yf ∈ Lp(X × Y ) if and only if Dl

yf ∈
Lp(X × Y +). Moreover the 3 Lp norms are equivalent.
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The density of S(X×Y −/0) and S(X×Y +) in the corresponding W k,p shows that the new
W k,p spaces can also be defined by density using the W k,p-norm of the extension (Z− and E+

respectively) from half-plan to the whole plan. By the continuity of R∗+ in the second row of
(6.9) when k = 0, one sees that the Lp-norms of the extensions by Z− and E+ are equivalent
to the Lp norm on the half-plan. Therefore, one has the following analog of Theorem 51.

Theorem 64. Given k > 0 and σ | k,

1. If f ∈ S∗(X × Y +/0) then

(a) f ∈ W k,p(X × Y +) if and only if Dα
xD

β
y f ∈ Lp(X × Y +) for ‖(α, β)‖ ≤ k.

(b) f ∈ W−k,p(X × Y +) if and only if there exists gαβ ∈ Lp(X × Y +) such that f =∑
‖(α,β)‖≤kD

α
xD

β
y gαβ.

2. If f ∈ S∗(X × Y +) then

(a) f ∈ W k,p(X × Y +/0) if and only if Dα
xD

β
y f ∈ Lp(X × Y +) for ‖(α, β)‖ ≤ k.

(b) f ∈ W−k,p(X × Y +/0) if and only if there exists gαβ ∈ Lp(X × Y +) such that
f = ∑

‖(α,β)‖≤kD
α
xD

β
y gαβ.

6.4.2 Trace theorems
To make the notation more intuitive, we abusively denote the horizontal arrows in theW k,p-row
and the S∗-row by their corresponding arrows in the S-row (i.e. their restriction on the space
of smooth functions), that is we will use Z−, C+, R−, E+ instead of C∗−, Z∗+, E∗−, R∗+.

The goal of this section is to define the restriction of a function f ∈ W k,p(X × Y +) on
X × {0}. The pointwise restriction of f does not make sense because f is only defined up to a
negligible set (i.e. of Lebesgue measure 0). The strategy is to take a sequence fn ∈ S(X ×Y +)
that is W k,p-converging to f and to see if {fn

∣∣∣
X×{0}

} converges in Lp(X × {0}). If it does one
calls the limit trace of f on X ×{0}. Theorem 65, Example 28 and Theorem 67 show that one
should expect

• high regularity of f , i.e. k large enough, so that the limit exists,

• a drop of regularity of the restriction.

From diagram (6.9) and its opposite version (with all + and − signs interchanged), there
is a natural inclusion ι : W k,p(X × Y +/0) to W k,p(X × Y +), by first extending by zero, then
cutting-off

W k,p(X × Y +/0) � � ι //

Z+

))

W k,p(X × Y +)

W k,p(X × Y )

C+
66
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6.4. Sobolev spaces on compact manifold with boundary

Theorem 65 (Vanishing trace). If p ∈ (1,+∞) and −1 + 1
p
< ρ k

σ
< 1

p
then ι is an isomorphic

Proof. Define

M+(λ) : S(X × Y +) −→ S(X × Y +)
f(x, y) 7−→ f(x, λy)

Since 〈M+(λ)f, g〉 = 〈f,N+(λ)g〉 for all f ∈ S(X × Y +), g ∈ S(X × Y +/0) and λ > 0 where
N+(λ)g(x, y) := λ−1g(x, λ−1y), one sees that M+(λ) extends to S∗(X × Y +/0) −→ S∗(X ×
Y +/0) and that one extension of it is N∗+(λ) the adjoint of N+(λ):

S(X × Y +)� _

��

M+(λ) // S(X × Y +)� _

��
S∗(X × Y +/0)

N∗+(λ)
// S∗(X × Y +/0)

We abusively call N∗+(λ) by M+(λ). We will let λ → +∞, the operator M+(λ) intuitively
"shrinks" to the boundary X × {0}.

Lemma 66. For k ≥ 0, λ ≥ 1, M+(λ) : W k,p(X × Y +) −→ W k,p(X × Y +) is bounded and

‖M+(λ)f‖Wk,p(X×Y +) ≤ Cλ
ρk
σ
− 1
p‖f‖Wk,p(X×Y +)

where C does not depend on λ.

The proof of the Lemma 66 is straightforward: it suffices to prove the boundedness in
the case σ | k an use interpolation inequality 54, also one can suppose that f ∈ S(X ×
Y +). Note that ( ∂

∂y
)lM+(λ) = λlM+(λ)( ∂

∂y
)l while ∂

∂x
commutes with M+(λ), hence in general

|Dα
(x,y)M+(λ)f | ≤ λkρ/σ|Dα

(x,y)f | for all ‖α‖ ≤ k, λ ≥ 1. The −1
p
in the exponent of λ is due to:

‖M+(λ)g‖Lp = λ−1/p‖g‖Lp .
Back to Theorem 65, let f ∈ S(X × Y +) and define M̃(λ)f to be f on X × Y + and

M−(λ)C−E+f onX×Y −, then M̃(λ)f ∈ W σ/ρ,p(X×Y ). Note thatDyM̃(λ)f is not continuous
at X ×{0} but is still in Lp(X ×Y ) because f and M−(λ)C−E+f agrees on X ×{0}. Suppose
we can prove that as λ → +∞ the sequence M̃(λ)f converges to M̃f in W k,p(X × Y ) then
C−M̃f = limλ→+∞M−(λ)C−E+f = 0. One obtains, by exactness of the second row of diagram
(6.9), existence of a g ∈ W k,p(X×Y +/0) such that M̃f = Z+g. Moreover, since C+M̃(λ)f = f

for all λ > 0, one has C+M̃f = f , hence ιg = C+Z+g = C+M̃f = f .
It remains to prove the existence of such M̃f . By Lemma 66 and the fact that all M̃(λ)f

are the same on X × Y +, one has

‖M̃(λ)f − M̃(2λ)f‖Wk,p(X×Y ) ≤ 2Cλ
ρk
σ
− 1
p‖f‖Wk,p(X×Y +)

Therefore if ρk
σ
< 1

p
, the sequence M̃(2n)f converge in W k,p(X × Y ) to M̃f .
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6. Interpolation theory and Sobolev spaces on compact manifolds

Remark 28. If ρ = σi = 1 then σ = 1, take k = 0 then the Theorem 65 claims that S(X ×
Y +/0) is dense in LP (X × Y +) ⊃ S(X × Y +), or equivalently any smooth function f ∈
S(X × Y +) not necessarily vanishes on X × {0} can be Lp-approximated by smooth functions
with all derivative vanishes on X×{0}. This means that one cannot define any notion of trace
on X × {0} that varies continuously under the Lp norm.

In case of high regularity ρk
σ
> 1

p
, one can define a meaningful notion of trace.

Theorem 67 (Well-defined trace). If ρk
σ
> 1

p
then the restriction map

B : S(X × Y +) −→ S(X)
f(x, y) 7−→ f(x, 0)

extends to a bounded operator, abusively noted by B : W k,p(X × Y +) −→ Lp(X).

Definition 10. We call ∂W k,p(X × Y +) := W k,p(X × Y +)/ kerB the space of boundary
value of function in W k,p(X × Y +).

Theorem 67 can be strengthen by remarking that if σ := lcm(σ1, . . . , σn, ρ) = lcm(σ1, . . . , σn)
and if W (ξ) denotes the weight (1 + ξ2σ1

1 + · · ·+ ξ2σn
n )1/2σ then B and W (Dx) commute, i.e.

W k,p(X × Y +)
W (Dx)l

��

B // Lp(X) ⊂ S∗(X)
W (Dx)l
��

W k−l,p(X × Y +) B // Lp(X)

as long as ρ(k−l)
σ

> 1
p
. Therefore, one has

Theorem 68 (Regularity of trace). If 0 ≤ l < k− σ
ρp

then the trace operator B in Theorem 67
actually of image in W l,p(X) and the operator

B : W k,p(X × Y +) −→ W l,p(X)

is bounded.

Proof of Theorem 67. It suffices to prove that ‖Bf‖Lp(X) ≤ C‖f‖Wk,p(X×Y +) for all f ∈ S(X ×
Y +) and 1 ≥ ρk

σ
> 1

p
(for higher k, embed in the W k,p smaller k). Define

Tv : S(X × Y +) −→ S(X × Y +)

f 7−→
(

(x, y) 7−→ 1
v

∫ v

0
f(x, y + w)dw

)
for v > 0. One can check that Tv extends to a bounded operator Tv : W k,p(X × Y +) −→
W k,p(X × Y +) for all k ≥ 0 and that‖DyTvf‖Lp(X×Y +) ≤ Cv−1‖f‖Lp(X×Y +),

‖DyTvf‖Lp(X×Y +) ≤ C‖f‖Wσ/ρ,p(X×Y +)
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6.4. Sobolev spaces on compact manifold with boundary

hence by Interpolation inequality Theorem 54, one obtains for all 0 ≤ k ≤ σ/ρ: ‖DyTvf‖Lp(X×Y +) ≤
Cvρk/σ−1‖f‖Wk,p(X×Y +) hence

‖Dy(Tv/2 − Tvf)‖Lp(X×Y +) ≤ Cvρk/σ−1‖f‖Wk,p(X×Y +) (6.11)

Similarly, one can prove that for all 0 ≤ k ≤ σ/ρ: ‖(Id−Tv)f‖Lp(X×Y +) ≤ Cvρk/σ‖f‖Wk,p(X×Y +)
therefore

‖(Tv/2 − Tv)f‖Lp(X×Y +) ≤ Cvρk/σ‖f‖Wk,p(X×Y +) (6.12)

Moreover, using Hölder inequality and Fundamental theorem of calculus, one has: if g ∈
S(X × Y +) then

‖Bg‖Lp(X) ≤ C‖g‖1/p′
Lp(X×Y +)‖Dyg‖1/p

Lp(X×Y +) (6.13)

Substitute g by (Tv/2 − Tv)f in (6.13) then use apply (6.11) and (6.12), one has

‖B(Tv/2 − Tv)‖Lp(X) ≤ Cv
ρk
σ
− 1
p‖f‖Wk,p(X×Y +)

Therefore if 1
p
< ρk

σ
≤ 1, the sequence BT2−nf converges in Lp(X) and the limit is of Lp-norm

less than C‖f‖Wk,p(X×Y +). Since f is continuous, the limit is f
∣∣∣
X×{0}

. The theorem follows.

Remark 29. The fact that the condition on l in Theorem 68 is an open condition explains why
we topologize the space of boundary value ∂W k,p(X × Y +) by the quotient W k,p-norm instead
of any W l,p-norm. Also, we have completeness for free.

In the proof of Theorem 65, we glue a function f+ ∈ S(X × Y +) with f− ∈ S(X × Y −)
of the same value on X × {0} and the result is a function in W σ/ρ,p(X × Y ). This can be
generalised as follow

Theorem 69 (Patching theorem). If p ∈ (1,+∞) and 1
p
< ρ k

σ
< 1 + 1

p
, then given f+ ∈

W k,p(X × Y +) and f− ∈ W k,p(X × Y −) such that Bf+ = Bf− in Lp(X), one defines f ∈
Lp(X×Y ) such that f = f+ on X×Y + and f = f− on X×Y −. Then actually f ∈ W k,p(X×Y ).

6.4.3 Trace operator on manifold
The following paragraph does not appear in [Ham75] because of Remark 23.

To resume, we have defined Sobolev spaces on manifold with boundary as the space of
currents whose cut-off restrictions on each chart are in W k,p. Also we have defined trace
operator of Sobolev spaces on half-plan in a vision to extend the notion to manifold.

Let f ∈ W k,p(M/A) and B be a connected component of ∂M . With the same notation as
Definition 8, f gives the data of fi = (ψif) ◦ ϕ−1

i ∈ W k,p(Ri/Ai) the cut-off restriction of f on
each chart using a partition of unity {ψi}i subordinated to a good atlas (Ui)i of M , where Ri

is an Euclidean space of the same dimension as M (Ai = ∅), or a half-plan (Ai ⊂ ∂Ri). Note
that Ui ∩ B is a good atlas of B and ψi is still a partition of unity subordinated to this atlas,
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6. Interpolation theory and Sobolev spaces on compact manifolds

therefore take gi ∈ W l,p(∂Ri) to be trace of fi on the image of B of each chart. It remains to
check that the data (gi) corresponds to a unique element g ∈ W l,p(B). Recall that we have the
following diagram:

0 //W l,p(B)
ι ..⊕

iW
l,p(∂Ri)

π
mmmm

where ι admits a projection π given by the cut-off functions ψ̃i that we choose to be the
same ones used for M . Hence to see that (gi)i is in the image of ι, it suffices to check that
ι ◦ π((gi)i) = (gi)i which should be straightforward, since ∑i ψ̃iψi = 1.

Now that we defined a trace operator B : W k,p(M) −→ Lp(∂M) that factor through
W k,p(M) −→ W l,p(∂M) for all 0 ≤ l < k − σ

ρp
, we can define the space of boundary value of

function in W k,p(M) by
∂W k,p(M) := W k,p(M)/ kerB

which has a finer topology than its image in any W l,p(∂M) for 0 ≤ l < k − σ
ρp
.
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Chapter 7

Elliptic and parabolic equations on
compact manifolds

7.1 Commutative diagram and linear PDE. Example:
Semi-elliptic equation on Rn

Fix a weight (σ1, . . . , σn) on X = Rn and recall that for an index α, we note ‖α‖ := ∑
i
σ
σi
αi.

We will consider in this section a partial differential operator A that is heterogeneous, of
constant coefficient and of weight r, i.e.

A(D) =
∑
‖α‖=r

aαD
α, Dα =

(
1
i

∂

∂x

)α

The symbol of A is A(ξ) := ∑
‖α‖=r aαξ

α and A is called semi-elliptic if A(ξ) 6= 0 for all
ξ ∈ Rn \ 0

Remark 30. If A is semi-elliptic then σ | r. In fact choose all ξj = 0 except ξi 6= 0, one sees
that there must be a non-zero coefficient a(0,..., rσi

σ
,...,0), i.e. rσi

σ
∈ Z for all i = 1, n. Hence σ | r

(σ = lcm(σi) being a combination of σi, look at the same combination of rσi
σ
).

It is clear that the operator A : W n,p(X) −→ W n−r,p(X) is bounded for all n ∈ R and the
following diagram commutes for every real numbers k < n.

W n,p(X) A(D)//
� _

i
��

W n−r,p(X)� _

i
��

W k,p(X) A(D)//W k−r,p(X)

(7.1)

Definition 11. Let E,F,G,H be Banach spaces and l,m, p, q are bounded operator such that
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7. Elliptic and parabolic equations on compact manifolds

the following diagram (diag:D) commutes

E
l //

m
��

F

p
��

G
q // H

(diag:D)

Then (diag:D) is said to be an exact square if the following associated sequence is exact

0 // E
l⊕m// F ⊕G p	q // H // 0

Example 6. If (A,B) is an interpolatable pair of Banach spaces then

A ∩B

��

// A

��
B // A+B

is exact, where arrows are natural inclusions.

The notion of exact square allows us to reformulate classical results of elliptic equation as

Theorem 70 (Elliptic equation with constant coefficients). The square (7.1) is exact for all
k < n in R. This encodes the following 3 results:

1. W n,p(X) � � A⊕i //W n−r,p(X)⊕W k,p(X) is of closed image, i.e. there exists C > 0 such
that

‖f‖Wn,p(X) ≤ C
(
‖Af‖Wn−r,p(X) + ‖f‖Wk,p(X)

)
which is Gårding’s inequality.

2. kerA	 i = ImA⊕ i, i.e. if f ∈ W k,p(X) and Af ∈ W n−r(X) then actually f ∈ W n,p(X),
which is regularity theorem.

3. ImA 	 i = W k−r,p(X), i.e. for all g ∈ W k−r,p(X), there exists f ∈ W k,p(X) such that
Af − g ∈ W n−r,p(X), which is the existence of approximate solution (the idea behind
parametrix).

A way to prove that a square is exact is to show that it splits

Definition 12. The square (diag:D) is called split if there exists l′,m′, p′, q′ such that

E
l
//

m
��

F

p
��

l′uu

G
q //

m′

HH

H

p′

VV

q′
ii

(7.2)
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commutes in 4 ways:

��//

// OO ooOO

�� oo

and splits in 4 ways
99

��

zz
FF 99zz

��

FF

��$$

FF

ee ��

FF

99zz

,

i.e. the sum of two circle in each diagram is the identities.

Theorem 71. 1. A split square is exact. In fact, if a square splits, then the associated short
sequence splits.

2. If E,F,G,H are Hilbert spaces then any exact square splits.

Proof of Theorem 70 . Since A is semi-elliptic, there exists ε > 0 such that |A(ξ)| ≥ ε‖ξ‖r for
‖ξ‖ := (ξ2σ1

1 + · · ·+ ξ2σn
n )1/2σ. Let ψ(ξ) be a radial function in ξ that is identically 1 for ‖ξ‖ ≤ 1

and 0 for ‖ξ‖ ≥ 2 and define

G(ξ) :=


1−ψ(ξ)
A(ξ) , if ‖ξ‖ ≥ 1

0, if ‖ξ‖ ≤ 1

Then by Stein’s multiplier theorem,

G(D) : W k−r,p(X) −→ W k,p(X) ∀k ∈ R,
ψ(D) : W l,p(X) −→ W k,p(X) ∀k, l ∈ R

are bounded operators. We say thatG(D) is an approximate inverse ofA(D) becauseG(D)A(D) =
A(D)G(D) = 1− ψ(D). It is easy to check that (7.1) splits:

W k,p(X)
A(D)
00

i
��

W k−r,p(X)

i
��

G(D)
qq

W l,p(X)
A(D) ..

ψ(D)

JJ

W l−r,p(X)
G(D)
mm

ψ(D)

TT

The following abstract result shows that solutions of homogeneous equation Af = 0 are
smooth (also proved in the second point of Theorem 70) and the solution space is of finite
dimension.
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Theorem 72. Suppose that the square

E l //

m
��

F

p
��

G
q // H

is exact and m, p are compact operators. Then l and q have closed image, and their kernels and
cokernels are isomorphic through m and p, and are of finite dimensional.

Proof. By basic diagram chasing, one can see that the restriction of m is an isomorphism
ker l −→ ker q. But m is compact, ker l ∼= ker q are locally compact, hence of finite dimension.

It is easy to check (with sequential limit) that Im l is closed in F , since Im(l⊕m) = ker p	q
is closed and m is compact. So coker l is a Banach space.

Let p′′ : coker l = F/l(E) −→ H/q(G) be the map induced by p to the quotients, note that
we have to take the closure of q(G) to ensure that the quotient is Banach. Then p′′ is obviously
continuous and compact. Also p′′ is surjective because F ⊕G p	q // // H .

We will prove that p′′ is injective. If f ∈ F \ l(E) then by Hahn-Banach theorem, there
exists a linear functional λ ∈ F ∗ such that λ(f) = 1 and λ(l(E)) = 0. One has

0 // H∗
(p	q)∗// F ∗ ⊕G∗(l⊕m)∗ // // E∗ // 0

and that (l⊕m)∗(λ⊕0) = 0, hence there exists λ′ ∈ H∗ such that λ⊕0 = (p	q)∗λ′, i.e. λ′◦q = 0
and λ′ ◦ p = λ, which means λ′ vanishes on q(G), hence q(G), and that λ′(p(f)) = λ(f) = 1.
Hence p(f) 6∈ q(G) and p′′ is injective.

The injectivity of p′′ has 2 consequences. First, it means that coker l ∼= H/q(G) by a compact
operator, hence the two are locally compact and of finite dimension.

Second, it proves that q(G) is closed in H. In fact, given h ∈ q(G), by surjectivity of
p 	 q, one has h = pf + qg for f ∈ F and g ∈ G, this means p′′(f̄) = 0̄ ∈ H/q(G), hence
f̄ = 0̄ ∈ coker l, i.e. f = l(e) for some e ∈ E. Therefore

h = p ◦ l(e) + q(g) = q(m(e) + g) ∈ q(G)

and p(G) = p(G) is closed in H.

Remark 31. The proof of Theorem 72 is much simpler for split squares. We presented the
version for exact squares because we will use it later. The advantage of using exact squares
instead of split square is, as we will see, that among commutative squares, exact squares form
a relatively open set, allowing us to "pertube" an exact square and extend the theory to cover
the case A of variable coefficients.
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7.2. Elliptic equation on half-plan X × Y +. Boundary conditions.

7.2 Elliptic equation on half-plan X×Y +. Boundary con-
ditions.

We will quickly review in this part the ideas to solve elliptic equations with constant coefficients
on half-plan. This does not require any more abstract (i.e. with diagram) results. The main
tasks will be using suitable cut-off function on the frequent space (1) to define the approximate
inverse of an elliptic operator on half-plan that is adapted to the boundary structure and (2)
to approximately inverse the boundary operators.

We will solve elliptic equation on X × Y + where the variables are x1, . . . , xn and y, under
weight Σ = (σ1, . . . , σn, ρ). Recall that A(D) = ∑

‖(α,β)‖=r aαβD
α
xD

β
y with symbol A(ξ, η) =∑

‖(α,β)‖=r ξ
αηβ.

If A(D) is semi-elliptic then for all ξ 6= 0 the polynomial η 7→ A(ξ, η) has no real zeros,
hence can be factorized to

A(ξ, η) = A+(ξ, η)A−(ξ, η)

where A+(ξ, η) (resp. A−(ξ, η)) only has zeros η with Im η > 0 (resp. Im η < 0).

Remark 32. 1. By semi-ellipticity, the monomial aαβξαηβ with biggest β has index α = 0.
Hence we can suppose that the leading coefficients, as polynomials in η of A,A+, A− are
1.

2. As polynomial in η, A+(ξ, η) = ∑m
β=0 a

+
β (ξ)ηβ wherem = rρ/σ and a+

β (ξ) are Σ-heterogeneous
of weight (m− β)ρ, i.e.

a+
β (tσ/σ1ξ1, . . . , t

σ/σnξn) = t(m−β)ρa+
β (ξ)

Also, the coefficients a+
β are smooth in ξ.

We will solve the elliptic equation under some suitable boundary conditions. Let Bj, 1 ≤
j ≤ m be m Σ-heterogeneous boundary operators of weights rj, i.e.

Bj(D) =
∑

‖(α,β)‖=rj

bjαβD
α
xD

β
y

of symbol
Bj(ξ, η) =

∑
‖(α,β)‖=rj

bjαβξ
αηβ =

∑
‖(α,β)‖=rj

bjβ(ξ)ηβ

where bjβ are heterogeneous in ξ (actually polynomials) and of weight rj − β.
As our discussion on trace operator, if k > rj + σ

ρp
then Bj extends to a bounded operator

W k,p(X × Y +)

))

Bj // ∂W k−rj ,p(X) � � //W l,p(X)

W k−rj ,p(X × Y +)

55
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7. Elliptic and parabolic equations on compact manifolds

for all 0 ≤ l < n− rj − σ
ρp
.

Definition 13. We will say that the operators Bf = (B1f, . . . , Bmf) satisfy the complemen-
tary boundary condition (CBC) if the

det
(
cjβ(ξ)

)
j,β
6= 0 ∀ξ ∈ Rn \ {0}

where cjβ(ξ) are the cofficients of the remanders Cj(ξ, η) when one divides Bj(ξ, η) by A+(ξ, η)
as polynomials in η, i.e.

Bj(ξ, η) ≡ Cj(ξ, η) =
m−1∑
β=0

cjβ(ξ)ηβ mod A+(ξ, η)

Approximate inverse of boundary operator B. The CBC condition allows us to approx-
imately inverse boundary operator B.

Theorem 73 (Approximate inverse of B). Let B : S(X × Y +) −→ S(X)⊕m be a boundary
operator that satisfies CBC condition, then there exists an operator

H : S(X)⊕m −→ S(X × Y +)
(h1, . . . , hm) 7−→ H1h1 + · · ·+Hmhm

such that

1. (Id−BH)h = ψ(Dx)h for all h ∈ S(X)⊕m.

2. (Id−HB)f = ψ(Dx)f for all f ∈ kerA(D) : S(X × Y +) −→ S(X × Y +).

where ψ(ξ) is the radial smooth cut-off function in ξ that equals 1 when ‖ξ‖ ≤ 1 and 0 when
‖ξ‖ ≥ 2.

Moreover, if k > rj + σ
ρp

then the operators Hj : S(X) −→ S(X×Y +) extends to a bounded
operator

Hj : ∂W n−rj ,p(X) −→ W k,p(X × Y +)

Sketch of proof. We define Hj : S(X) −→ S(X × Y +) by its action on the frequent space of
X, in particular, set

H̃jh(ξ, η) := Hj(ξ, y)h̃(ξ)

where f̃ is the partial (in x) Fourier transform of f and Hj(ξ, y) is given by

Hj(ξ, y) := (1− ψ(ξ))
∫

Γ

m−1∑
α=0

eαj (ξ)A
+
α (ξ, η)

A+(ξ, η)e
iηydη

where Γ ⊂ C is a curve enclosing all zeros of A(ξ, η) with Im η > 0, (eαj (ξ))α,j is the inverse
matrix of (cjβ(ξ))j,β and A+

α (ξ, η) := ∑m−α−1
β=0 a+

α+β+1(ξ)ηβ.
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Some auxilary functions. We cannot use the operator G as in the case of whole plan as
an inverse of A on the half-plan X × Y +, since we only have access to the frequent space of
X. However we can modify the cut-off function to create an approximate inverse of A on the
half-plan.

Let ϕ : R≥0 −→ R be the function that we used in the definition of E+, i.e.

ϕ(x) := e4

π
.
e−(x1/4+x−1/4) sin(x1/4 − x−1/4)

1 + x
, x ≥ 0

with the properties
∫∞

0 xnϕ(x)dx = (−1)n for all n ∈ Z \ {0} and
∫∞

0 ϕ(x)dx = 0. Extending ϕ
by 0 for x < 0, one still has a smooth function. Define χ(y) := −ϕ(−y − 1), then χ ∈ S(Y ),
with support in (−∞,−1] and

∫
R
ynχ(y)dy =

0, if n > 0
1, if n = 0

In the frequent space of Y , this means χ̂(0) = 1 and Dk
η χ̂(0) = 0, i.e. 1 − χ̂(η) has a zero of

infinite order at η = 0.
Also, since χ = 0 when y > −1, the convolution

f 7−→ χ̂(Dy)f = χ ∗ f

maps S(Y −/0) to itself, hence induces a mapping from S(Y +) to itself, since

0 // S(Y −/0) // S(Y ) // S(Y +) // 0

(given any f ∈ S(Y +), any extension f̃ of f to S(Y ) has the same restriction of χ̂(Dy)f̃ on
Y +).

Let w(ξ, η) := ψ(ξ)χ̂(η) then w defines an operator

w(D) : S(X × Y +) −→ S(X × Y +)

In fact, for all k, l ∈ R, there exists C > 0 such that

‖w(D)f‖Wk,p(X×Y +) ≤ C‖f‖W l,p(X×Y +).

Approximate inverse of elliptic operator A on half-plan. The auxilary function w will
play the role of ψ in the whole plan case.

Theorem 74 (Approximate inverse of A on X × Y +). There exists an operator G : S(X ×
Y +) −→ S(X × Y +) such that:

1. (Id− AG) = w(D)
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2. For all k, l ∈ R, there exists C > 0 such that for all f ∈ S(X × Y +):

‖(Id−GA)ψ(Dx)‖Wk,p(X×Y +) ≤ C‖f‖W l,p(X×Y +)

Also G extends to a bounded operator G : W k−r,p(X × Y +) −→ W k,p(X × Y +) for all k ∈ R.

Sketch of proof. In fact G is defined as follows:

G0(ξ, η) := 1− w(ξ, η)
A(ξ, η)

which is smooth at (0, 0), where 1−w has a zero of infinite order. Then G0(D) : S(X×Y ) −→
S(X × Y ) extends to W k−r,p(X × Y ) −→ W k,p(X × Y ). Finally, take G = C+GE+, which
maps S(X × Y +) −→ S(X × Y +) by first extending a function to the whole plan, applying G0

and finally cutting-off.

Approximate inverse of the combined operator. Let C be the combined operator:

C : S(X × Y +) −→ S(X × Y +)⊕ S(X)⊕m

f 7−→ (Af,Bf)

and define the operator J as

J : S(X × Y +)⊕ S(X)⊕m −→ S(X × Y +)
(g, h) 7−→ Gg +H(h−BGg)

then one can prove with straightforward computation that J is an approximate inverse of C.

Theorem 75 (Approximate inverse of C). For smooth functions f ∈ S(X × Y +) and (g, h) ∈
S(X × Y +)⊕ S(X)⊕m, one has

1. (Id− CJ )(g, h) = (w(D)g, ψ(Dx)(h−BGg)) =: λ(g, h)

2. (Id− JC)f = ψ(Dx) (Id−GA)f + (Id−HB − ψ(Dx))w(D)f =: µ(f)

Since G,H extend to Sobolev spaces, one also has

J : W k−r,p(X × Y +)
m⊕
j=1

∂W k−rj ,p(X) −→ W k,p(X × Y +)

whenever k > σ
ρp

+ maxj rj.
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Theorem 76. In analogue of Theorem 70, one has the following exact-split square

W k,p(X × Y +)
C
//

ι

��

W k−r,p(X × Y +)⊕m
j=1 ∂W

k−rj ,p(X)
ι

��

Jpp

W l,p(X × Y +) C //

µ

JJ

W l−r,p(X × Y +)⊕m
j=1 ∂W

l−rj ,p(X)
J
nn

λ

TT
(7.3)

for all k > l > σ
ρp

+ maxj rj.

7.3 From local to global.

7.3.1 Pertubation of exact squares and consequences.
We will extend the result of Theorem 70 (exactness of heterogeneous elliptic operator with
constant coefficient on Euclidean plan) in 2 levels: (1) for general elliptic operators (non-
heterogeneous and with variable coefficients) and (2) for such operators on compact manifold
(with boundary if needed). These 2 generalizations will be done using the same technique:
"cube by cube" approximating an exact square.

We topologize the space of commutative squares E
l //

m
��

F

p
��

G
q // H

as a closed subspace SQ(E,F,G,H)

of L(E,F )× L(F,H)× L(E,G)× L(G,H) defined by the equation q ◦m = p ◦ l.

Theorem 77. In SQ(E,F,G,H), the exact squares form an open set.

Instead of giving a proof (see [Ham75, page 75-77]), let us explain why Theorem 77 is true.
The commutativity already tells us that the composition of any two consecutive arrows in

0 // E
l⊕m// F ⊕G p	q // H // 0

is 0, and exactness is an extra condition of type "maximal rank", which is an open condition
(For matrices, this means the derterminant does not vanish. The analogous phenomenon for
Banach spaces is that a linear map sufficiently close to an invertible one is also invertible).

We will distinguish the following 2 types of cubes that we will use to cover a manifold. We
will call the following set an interior cube

Bε :=
{

(x1, . . . , xn) : |x1| ≤ εσ/σ1 , . . . |xn| ≤ εσ/σn
}

and the following an boundary cube

B+
ε :=

{
(x1, . . . , xn, y) : |x1| ≤ εσ/σ1 , . . . |xn| ≤ εσ/σn , 0 ≤ y ≤ εσ/ρ

}
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7. Elliptic and parabolic equations on compact manifolds

For the second type, we note by ∂0 the part y = 0 of the boundary of B+
ε , and by ∂e the

remaining part.
We will say that the A := ∑

‖α‖≤r aα(x)Dα is semi-elliptic at 0 if A0 := ∑
‖α‖=r aα(0)Dα

is a semi-elliptic operator.

Proposition 78 (Approximate operator on interior cube). Suppose that A := ∑
‖α‖≤r aα(x)Dα

is defined in Bε0 and A is semi-elliptic at x = 0. Fix −∞ < l < k < +∞. Then there exists an
ε > 0 sufficiently small and an operator A# = ∑

‖α‖≤r a
#
α (x)Dα with smooth coefficients defined

on X such that

A# =

A, inside Bε

A0, outside B2ε

and the "k, l" square corresponding to A#, i.e.

W k,p(X) A#
//

� _

ι
��

W k−r,p(X)� _

ι
��

W l,p(X) A#
//W l−r,p(X)

is exact.

An analoguous result holds for boundary problem. The setup for boundary problem on
half-plan X × Y + is as follows.

A :=
∑

‖(α,β)‖≤r
aα,β(x, y)Dα

xD
β
y

Bj :=
∑

‖(α,β)‖≤rj

bjα,β(x, y)Dα
xD

β
y , j = 1,m

are operators with smooth coefficients on B+
ε0 and

A0 :=
∑

‖(α,β)‖=r
aα,β(0, 0)Dα

xD
β
y

Bj
0 :=

∑
‖(α,β)‖=rj

bjα,β(0, 0)Dα
xD

β
y , j = 1,m

If A is semi-elliptic at 0 then we say that {Bj} satisfy the CBC condition at 0 uf {Bj
0} are

CBC with respect to A0. Note that this is an "open condition", i.e. if the condition is satisfied
at (0, 0) then it is also satisfied in a neighborhood of (0, 0) in X × {0}. The analoguous result
for boundary problem can then be stated.

Proposition 79 (Approximate opearator on boundary cube). Under the previous setup and
with σ

ρp
+ maxj rj < l < k < +∞, for ε > 0 sufficiently small, there exists operators C# =
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(A#, B#) with smooth coefficient in X × Y + agreeing with (A,B) in B+
ε and with (A0, B0)

outside of B+
2ε such that the square

W k,p(X × Y +) C#
//

� _

ι

��

W k−r,p(X × Y +)⊕m
j=1 ∂W

k−rj ,p(X)
� _

ι

��
W l,p(X × Y +)

C#
//W l−r,p(X × Y +)⊕m

j=1 ∂W
l−rj ,p(X)

is exact.

We will prove Proposition 78 here to demonstrate how Theorem 77 is employed. Another
reason is that the corresponding proof in [Ham75] is not very readable due to a notation/printing
issue.

Proof of Proposition 78. We will use the change of coordinates x̃i = λ−σ/σixi, which gives a
diffeomorphism hλ from Bε0 to Bε0/λ, in which the derivative operators are(

∂

∂x̃i

)α
i

= λαiσ/σi
(
∂

∂xi

)α
i

, D̃α = λ‖α‖Dα

The operator A, viewed in hλ, i.e. the operator f 7→ A(f◦hλ), is
∑
‖α‖≤r aα(λσ/σix̃i)λ−‖α‖D̃α.

We pose

Ãλ :=
∑
‖α‖≤r

λr−‖α‖aα(λσ/σix̃i)D̃α

Ã0 :=
∑
‖α‖=r

aα(0)D̃α

Ã∗λ := ϕ(x̃)Ãλ + (1− ϕ(x̃))Ã0

where ϕ is radial in x̃, equals 1 for ‖x̃‖ ≤ 1 and 0 for ‖x̃‖ ≥ 2.
The coefficient before D̃α of Ã∗λ is λr−‖α‖

[
ϕ(x̃)aα(λσ/σix̃i) + (1− ϕ(x̃))aα(0)δ‖α‖=r

]
is the

same as that of Ã0 for x̃ outside of B2 and C0-converges to that of Ã0 inside B1. Hence for
λ sufficiently small the corresponding "k, l" diagram of Ã∗λ is exact, hence so is the diagram of
λ−rÃ∗λ. Choose ε = λ and A# to be λ−rÃ∗λ viewed in X through hλ.

Remark 33. To avoid making infinite intersection of open sets, we have to fix k and l first
in Proposition 78 and Proposition 79. The approximate operators A#, B# and the size ε of the
cube therefore depend on k, l, but this dependence will not be a trouble when we pass from local
to global situation.

The exactness of semi-elliptic operator with variable coefficients on manifold will be establish
analytically, meaning through the 3 statements similar to those of Theorem 70. Proposition 78
and 79 can be applied to prove the the local version of these statements.

89/137



7. Elliptic and parabolic equations on compact manifolds

Lemma 80. With the same ε and k, l as Proposition 78 and the extra condition that l ≥ k− 1,
one has for all 0 < δ < ε

1. ‖f‖Wk,p(Bδ) ≤ C
(
‖Af‖Wk−r,p(Bε) + ‖f‖W l,p(Bε)

)
for all f ∈ W k,p(Bε).

2. If f ∈ W l,p(Bε) and Af ∈ W k−r,p(Bε) then f ∈ W k,p(Bδ).

3. If g ∈ W l−r,p(Bδ/∂) then there exists f ∈ W l,p(Bε, ∂) such that

g − Af ∈ W k−r,p(Bε, ∂Bε).

Proof. Let ψ be a cut-off function that equals 1 on Bδ and 0 outside of Bε and A# be the
differential operator on X with exact "k, l" diagram given by Proposition 78 which equals A on
Bε. The idea of the remaining computation is to use the exactness of A# on ψf and the reason
for which the local-global passage is not trivial is that the operator A# and the multiplication
by ψ do not commute. The commutator [A#, ψ], however, is of weight at least 1 less than A
and with the choice l ≥ k − 1 the norm ‖[ψ,A#]f‖Wk−r,p(X) is dominated by ‖f‖W l,p .

1. If f ∈ W k,p(Bε) then ψf ∈ W k,p(Bε, ∂) and

‖f‖Wk,p(Bδ) ≤ ‖ψf‖Wk,p(X) ≤ C
(
‖A#ψf‖Wk−r,p(X) + ‖ψf‖W l,p(X)

)
≤ C

(
‖ψA#f‖Wk−r,p(X) + ‖[ψ,A#]f‖Wk−r,p(X) + ‖ψf‖W l,p(X)

)
≤ C ′

(
‖Af‖Wk−r,p(Bε) + ‖f‖W l,p(Bε)

)
2. Given f ∈ W l,p(Bε) and Af ∈ W k−r,p(Bε), one has ψf ∈ W l,p(X). Also, [A#, ψ]f ∈
W l−r+1,p(X) ⊂ W k−r,p(X) and ψA#f = ψAf ∈ W k−r,p(X), thereforeA#(ψf) ∈ W k−r,p(X).
By exactness of A#, one has ψf ∈ W k,r(X), so f ∈ W k,r(Bδ).

3. If g ∈ W l−r,p(Bδ/∂) ⊂ W l−r,p(X), by exactness of A# we can find f̃ ∈ W l,p(X) such that
g − A#f̃ ∈ W k−r,p(X). Choose f = ψf̃ ∈ W l,p(Bε/∂) then

g − Af = g − A#(ψf̃) = ψ(g − A#f̃) + [ψ,A#]f̃ ∈ W k−r,p(Bε)

since ψ(g − A#f̃) ∈ W k−r,p(Bε) and [ψ,A#]f̃ ∈ W l−r+1,p(Bε) ⊂ W k−r,p(Bε).

Lemma 81. With (A,B) and ε, k, l as in Proposition 79 with the extra condition l ≥ k − 1,
then for all δ < ε, one has

1. ‖f‖Wk,p(B+
δ

) ≤ C
(
‖Af‖Wk−r,p(B+

ε ) +∑m
j=1 ‖Bjf‖∂Wk−rj ,p(∂0B

+
ε ) + ‖f‖W l,p(B+

ε )

)
for all f ∈

W k,p(B+
ε ).
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2. If f ∈ W l,p(B+
ε ) and Af ∈ W k−r,p(B+

ε ) and Bjf ∈ ∂W k−rj ,p(∂0B
+
ε ) then actually f ∈

W k,p(B+
δ ).

3. If g ∈ W l−r,p(B+
δ /∂e) and hj ∈ ∂W l−rj ,p(∂0B

+
δ /∂) then there exists f ∈ W l,p(B+

ε , ∂e) with

g − Af ∈ W k−r,p(B+
ε , ∂e), hj −Bjf ∈ ∂W k−rj ,p(∂0B

+
ε /∂).

The generalisation of Theorem 70 on manifold with variable coefficients is now straightfor-
ward. The only nontrivial issue is the definition of semi-elliptic operator A on manifold. This
requires a Riemannian metric g and ellipticity is naturally defined at every point, viewed in a
chart, as we did before. But this only defines the action of A on C∞(M) (or Cr(M) if regularity
is important), but not on W k,p(M/A) where A ⊂ ∂M is a connected component.

The action of a differential operatorA can be defined to be component-wise onW k,p(M/A) ↪→⊕
iW

k,p(Ri/Ai) where Ri is an Euclidean plan or a half-plan and Ai the corresponding bound-
ary part, i.e.

W k,p(M/A) ι //

A
��

⊕
iW

k,p(Ri/Ai)

A
��

W l,p(M/A) ι //⊕
iW

l,p(Ri,Ai)
It remains to check that the component-wise operation of A maps an element in the image on
W k,p(M/A) to an element in the image of W l,p(M/A). This can be done using the projection
as we did when defining trace operator on manifold, but the situation is much simpler here
since we can differentiate directly an element in S∗(M).

Theorem 82 (Elliptic equation on manifold). Let M be a compact manifold possibly with
boundary (and a compatible foliation if the weight is not uniform). Let A be a general semi-
elliptic operator of weight r, of variable coefficients and {Bj}j be a set boundary operators of
weight rj satisfying CBC with respect to A. Then for all σ

ρp
+ maxj rj < l < k < +∞, the

square
W k,p(M) C //

� _

ι

��

W k−r,p(M)⊕m
j=1 ∂W

k−rj ,p(∂M)
� _

ι

��
W l,p(M)

C
//W l−r,p(M)⊕m

j=1 ∂W
l−rj ,p(∂M)

is exact where C = (A,Bj).

Proof. We can suppose l ≥ k − 1, the general case follows using

Lemma 83. If the two following squares are exact

E
l //

m
��

F

p
��

G q
// H

, G
q //

r
��

H

s
��

K
t
// L
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then
E

l //

rm
��

F

sp
��

K
t
// L

is exact.

Now covering M by finitely many charts of type Bδ ⊂ Bε and B+
δ ⊂ B+

ε such that the
interior of Bδ and of B+

δ cover M . Also, choose a partition of unity ∑ψ = 1 subordinated
to Bδ and B+

δ . The exactness will be established if we can prove the analogue of the 2 last
statements of Theorem 70

For the regularity statement: If f ∈ W l,p(M), Af ∈ W k−r,p(M) and Bjf ∈ W k−rj ,p(∂M)
then the same holds for ψf in Bε and B+

ε since

[A,ψ]f ∈ W l−r+1,p ⊂ W k−r,p, [Bj, ψ]f ∈ ∂W l−rj+1,p ⊂ ∂W k−rj ,p

Therefore ψf ∈ W k,p(Bδ) or W k,p(B+
δ ) hence f ∈ W k,p(M).

For the approximation: If g ∈ W l−r,p(M) and hj ∈ ∂W l−rj ,p(∂M) then ψg ∈ W l−r,p(Bδ/∂)
or W l−r,p(B+

δ /∂e) and ψhj ∈ ∂W l−rj ,p(∂0B
+
δ /∂). Then by Lemma 81, we can find f̃ ∈

W l,p(Bε/∂) with ψg − Af̃ ∈ W k−r,p(Bε/∂) or in a boundary cube f̃ ∈ W l,p(B+
ε /∂e) with

ψg − Af̃ ∈ W k−r,p(B+
ε /∂e) with ψhj − Bj f̃ ∈ ∂W k−rj ,p(∂0B

+
ε /∂). Then f := ∑

f̃ makes sense

and satisfies

g − Af = ∑(ψg − Af̃) is in W k−r,p(M)
h−Bjf = ∑(ψhj −Bj f̃) is in ∂W k−rj ,p(∂M)

7.3.2 Consequences of Theorem 72.
Under the same setup as Theorem 82, one has

Theorem 84 (Regularity of kernel and cokernel). The map C = (A,B) : W k,p(M) −→
W k−r,p(M)⊕m

j=1 ∂W
k−rj ,p(∂M) has closed range, finite dimensional kernel and cokernel and

the kernel and cokernel are independent of k in the sense of Theorem 72. In particular,
kerC ⊂ C∞(M)

The analoguous regularity for cokernel is less straightforward. We resume here the result.

Theorem 85 (Regularity of cokernel). If r > max rj then the image of C can be represented
by finitely many linear relations: (g, h) ∈ Im C if and only if it satisfies finitely many equations
of type:

〈g, γ〉M +
m∑
j=1
〈hj, ηj〉∂M = 0

with γ ∈ C∞(M) and ηj ∈ C∞(∂M).
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If max rj − r = k ≥ 0 then for all g ∈ W k−r,p(M), the normal derivatives ∂g
∂νi

are well
defined if σi

ρ
≤ k. The cokernel is then given by the relations

〈g, γ〉M +
∑

σi/ρ≤k
〈 ∂g
∂νi

, χi〉∂M +
m∑
j=1
〈hj, ηj〉∂M = 0

with γ ∈ C∞(M), χi ∈ C∞(∂M), ηj ∈ C∞(∂M).

7.4 Parabolic equation on manifold.

7.4.1 Parabolicity and local results.

Definition 14. The constant coefficient differential operator A(Dx, Dt) = ∑
‖(α,β)‖≤r aαβD

α
xD

β
t

is called parabolic if its symbol A(ξ, θ) := ∑
‖(α,β)‖=r aαβξ

αθβ has no zero when ξ ∈ R and
Im θ ≤ 0 except ξ = θ = 0.

Example 7. Take A = ∂t − ∂2
x − ∂2

y − ∂2
z = iDt + D2

x + D2
y + D2

z , the symbol is iθ +∑
ξ2
i has

no zero ξ ∈ R3, Im θ ≤ 0 except 0. Generally, the operator ∂t + A(Dxi) is parabolic if A is an
elliptic operator with the symbol A(ξ) ≥ 0 for all ξ ∈ R with equality only at ξ = 0.

Remark 34. 1. If σ = lcm(σ1, . . . , σn) is the lcm of weights of variable xi and τ is the
weight of t, then parabolicity implies 2τ | σ. Therefore if the weights of xi are uniform,
one can suppose that τ = 1.

2. Parabolicity implies ellipticity.

Similarly to the elliptic case, we attempt to define an approximate inverse G of A, of the
form

G(ξ, θ) = (1− ψ(ξ, θ))/A(ξ, θ)

such that G(Dx, Dt) : W k−r,p(X × T+/0) −→ W k,p(X × T+/0) and ψ(Dx, Dt) : W k,p(X ×
T+/0) −→ W k,p(X × T+/0) for all k, l ∈ R.

The sufficient condition for this is that ψ(ξ, θ) = ψ(ξ)χ̂(θ) where ψ is compactly support
and χ̂ ∈ S(T ) with χ̂−1 having a zero of infinite order at θ = 0, and χ̂ extends to a holomorphic
function in Im θ ≤ 0. The function χ̂ used in section 7.2 suffices. We then have the following
exact square

W k,p(X × T+/0)
A
//

� _

ι
��

W k−r,p(X × T+/0)� _

ι
��

Gpp

W l,p(X × T+/0) A //

ψ

JJ

W l−r,p(X × T+/0)
G

nn

ψ

TT
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The theory in section 7.2 also allows us to treat spatial boundary condition, that is, to
replace the Euclidean plan X by the half-plan X × Y +. The analog of CBC condition for
boundary operators

Bj(Dx, Dy, Dt) =
∑

‖(α,β,γ)‖≤rj

bjαβγD
α
xD

β
yD

γ
t

is that the symbols
Bj(ξ, η, θ) =

∑
‖(α,β,γ)‖=rj

bjαβγξ
αηβθγ

are linearly independent modulo A+(ξ, η, θ) as polynomial in η for all ξ ∈ Rn and for all
Im θ ≤ 0 except when ξ = θ = 0. In that case we have the exactness of

W k,p(X × Y + × T+/0) (A,Bj)//
� _

ι

��

W k−r,p(X × Y + × T+/0)⊕m
j=1 ∂W

k−rj ,p(X × T+/0)
� _

ι

��
W l,p(X × Y + × T+/0) (A,Bj) //W l−r,p(X × Y + × T+/0)⊕m

j=1 ∂W
l−rj ,p(X × T+/0)

7.4.2 Global results and causality.

We will use the following setup. LetM be a compact manifold (possibly with boundary), of the
form N × [α, ω] 3 (x, t). The global product gives a foliation that allows us to set the spatial
weight to be uniformly σ and the temporal weight to be τ . The boundary of M has 3 parts:
∂αM := N × α, ∂ωM := N × ω and ∂SM := ∂N × [α, ω].

Let A be a parabolic operator, meaning that A is parabolic at every point and Bj, j = 1,m
be a set of boundary operator satisfying CBC condition at every point on ∂SM . We take into
account the initial condition by only considering the space W k,p(M/∂α) of function vanishing
before time t = α. As before the operator

C := (A,Bj) : W k,p(M/∂α) −→ W k−r,p(M/∂α)
m⊕
j=1

∂W k−rj ,p(∂SM/∂α)

has closed range, finite dimensional kernel and cokernel which are independent of k > 1
p
+max rj.

The same method allows us to conclude that ker C ⊂ C∞(M) and the cokernel is given by
finitely many linear relations of type

〈g, γ〉M +
∑
j

〈hj, ηj〉∂M +
∑
i

〈 ∂
∂νi

g, χi〉∂SM

where γ ∈ C∞(M/∂ω), χi ∈ C∞(∂SM/∂ω) and ηj ∈ C∞(∂SM/∂ω).
The difference with elliptic equation is that the kernel and cokernel of C are not only of

finite dimension, but are zero.
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Theorem 86 (Causality). With the previous setup, the operator C = (A,Bj) defines an iso-
morphism

W k,p(M/∂α) C //W k−r,p(M/∂α)⊕m
j=1 ∂W

k−rj ,p(∂SM/∂α)

for all k > 1
p

+ maxj rj, and therefore an isomorphism

C∞(M/∂α) C // C∞(M/∂α)⊕m
j=1C

∞(∂SM/∂α)

Proof. Let β ≤ γ be real numbers in [α, ω] and let ker(β, γ) and coker(β, γ) be the kernel and
cokernel of operator C on N × [β, γ] with vanishing initial condition at β. Since dim ker(β, γ)
and dim coker(β, γ) are integer-valued, using the fact that dim ker(β, ω) is decreasing in β and
dim coker(α, γ) is increasing in γ, one can easily check that it suffices to show that the two
functions are continuous in (β, γ) to prove that they are identically 0.

The following statements can be verified mechanically:

1. Monotonicity: dim ker(β, γ) is decreasing in β, dim coker(β, γ) is increasing in γ.

2. One-sided continuity: dim ker(β, γ) is left-continuous in β, dim coker(β, γ) is right-continuous
in γ.

3. One-sided semi-continuity: dim ker(β, γ) is left upper semi-continuous in γ, i.e.

lim
γ1→γ−2

inf dim ker(β, γ1) ≥ dim ker(β, γ2)

This is due to the left-continuity in first variable of dim ker and the exact sequence

0 −→ ker(γ1, γ2) −→ ker(β, γ2) −→ ker(β, γ1)

where the last arrow is the restriction. Similar statement for coker:

lim
β2→β+

1

dim inf coker(β2, γ) ≥ dim coker(β1, γ)

This 3 statements suffice to finish the proof in the case where boundary conditions Bj on
∂SM are of constant coefficients since ker, coker only depend on the difference γ − β, up to a
translation in time of the solutions.

In case Bj are of variable coefficients, the idea of making translation in time can be formu-
lated using Index theory for Fredholm maps:

We recall that Fredholm maps between Banach spaces E,F are those in L(E,F ) with closed
image and finite dimensional kernel and cokernel. It is a classical result that

1. The set F of Fredholm maps are open in L(E,F ).

2. The index i(l) := dim ker l − dim coker l is continuous in F .

95/137



7. Elliptic and parabolic equations on compact manifolds

The difference dim ker(β, γ)− dim coker(β, γ) can be regarded as the index of a continuous
family C(β,γ) of operators on the same space N × [0, 1] using the diffeomorphism

N × [0, 1] ∼−→ N × [β, γ].

Hence dim ker(β, γ)−dim coker(β, γ) is constant. It follows that dim ker(β, γ) is both increasing
and one-sided semi-continuous in γ hence is right-continuous in γ, hence dim coker(β, γ) is
continuous in γ. Other continuities follows similarly.

Remark 35. To take into account the initial condition f
∣∣∣
α

= fα smooth, one looks for solution
of the form f = fb + f# where fb satisfies the initial condition and f# ∈ W k,p(N × [α, ω]/α)
satisfying a parabolic equation (Af#, B

jf) = (g, h) where g, h and the coefficients of A and Bj

depend smoothly on fb, and therefore still C∞ in (x, t).

7.4.3 Regularisation effect and Gårding inequality.
With the same technique used for elliptic equation, one can also prove regularity result for
parabolic equation. There are 2 different points, in comparison with the elliptic case:

1. There is a regularisation effect of parabolic equation: An arbitrarily weak estimate in
the past gives an arbitrarily strong estimate in the future. We will see that this is in
fact a consequence of the causality of parabolic equation (Theorem 86) and Kondrachov’s
theorem.

2. The temporal boundary condition is thicken: We will look at the norm on N × [α, π]
rather than the restriction to ∂αM .

Theorem 87 (Regularity and Garding inequality). Under the same setup and notation as
Section 7.4.2, let p ∈ (1,+∞) and k > l > 1

p
+ max rj. We denote by W k,p([β, γ]) the Sobolev

space W k,p(N × [β, γ]). Suppose that

f ∈ W l,p([α, ω]), Af ∈ W k−r,p([α, ω]), Bjf ∈ ∂W k−rj ,p([α, ω])

then f ∈ W k,p([π, ω]) for all π ∈ (α, ω). Also, for all l′ > −∞, there exists a constant C > 0
such that

‖f‖Wk,p([π,ω]) ≤ C
(
‖Af‖Wk−r,p([α,ω]) + ‖Bjf‖∂Wk−rj ,p([α,ω]) + ‖f‖W l′,p([α,π])

)
.

In particular, for homogeneous equation, i.e. Af = 0, Bjf = 0, the solution is C∞ and an
arbitrarily weak estimate in the past gives an arbitrarily strong estimate in the future.

Proof. Let us explain why the theorem is true in the case of no spatial boundary ∂N = ∅.
In this case, there is no distinction between l and l′. Consider A as an elliptic operator on
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7.5. Example: Linear heat equation.

N × [π̃, ω] with π̃ = α+π
2 and with no boundary operator, one has the following exact diagram:

W k,p([π̃, ω])� _

��

A //W k−r,p([π̃, ω])� _

��
W l,p([π̃, ω]) A //W l−r,p([π̃, ω])

Therefore the if f ∈ W l,p([α, ω]) and Af ∈ W k−r,p([α, ω])then f ∈ W k,p([π̃, ω]) ⊂ W k,p([π, ω])
and

‖f‖Wk,p([π,ω]) ≤ ‖f‖Wk,p([π̃,ω]) ≤ C
(
‖Af‖Wk−r,p([α,ω]) + ‖f‖W l,p([α,ω])

)
(7.4)

≤ C
(
‖Af‖Wk−r,p([α,ω]) + ‖f‖W l,p([α,π]) + ‖f‖W l,p([π̃,ω])

)
(7.5)

It remains to check that we can get rid of the ‖f‖W l,p([π̃,ω]) term on the right hand side. Suppose
not, then there exists a sequence {fi} ⊂ W l,p([α, ω]) such that Afi → 0 in W k−r,p([α, ω]) and
fi → 0 in W l,p([α, π]) but ‖fi‖W l,p([π̃,ω]) = 1. Then by (7.5), {fi} is a bounded sequence in
W k,p([π̃, ω]) and, by Kondrachov’s theorem, can be supposed to converge in W l,p([π̃, ω]) to a
function f̃ which has ‖f̃‖W l,p([π̃,ω]) = 1 and Af̃ = 0 on [π̃, ω] because A commutes with the
restriction. Moreover, since ‖fi‖W l,p([α,π]) → 0, one has f̃ ∈ W l,p([π̃, ω]/π̃) and the fact that
f̃ 6= 0 contradicts Theorem 86).

Remark 36. The proof of Theorem 87 in the general case, with spatial boundary taken into
account requires the notion of bigraded Sobolev spaces on half-plan, see [Ham75, page 97-100].
This is also how the regularity result for cokernel of elliptic operator, Theorem 85, is proved.

7.5 Example: Linear heat equation.
We use the same setup of M,N,α, ω as Section 7.4.2. Let ∆ be the (geometer’s) Laplacian

−∆f := gij(x)
(

∂2f

∂xi∂xj
− Γkij(x) ∂f

∂xk

)

It is easy to check that ∆ is an elliptic operator with symbol ∆ ≥ 0 (there is a factor i when
passing from ∂

∂xi
to Dxi). Hence on M = N × [α, ω] the operator ∂

∂t
+ ∆ is parabolic.

7.5.1 Linear system.
We will look at the linear parabolic system of equations for F = (f 1, . . . , fn) : M −→ Rn:

∂F

∂t
+ ∆F + a∇F + bF = G (7.6)
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7. Elliptic and parabolic equations on compact manifolds

where in local coordinates (a∇F )α = aαiβ
∂fβ

∂xi
and (bF )α = bαβf

β and (∆F )α = ∆fα and the
coefficients aαiβ and bαβ are smooth.

We will say that a function F = (f 1, . . . , fn) : M −→ Rn of class W k,p if it is W k,p

component-wise. We also denote abusively by W k,p(M) the direct sum W k,p(M)⊕n where F
belongs to.

Theorem 88 (Linear heat equation). Let p > dimM + 1 = dimN + 2 and k ≥ 0, then for
all G ∈ W k,p(N × [α, ω]/α), there exists a unique F ∈ W k+2,p(N × [α, ω]/α) that solves (7.6).
Moreover, the operator

F 7−→ ∂F

∂t
+ ∆F + a∇F + bF

is an isomorphism between Banach spaces W k+2,p(N × [α, ω]/α) −→ W k,p(N × [α, ω]/α).

Proof. Note that

H : W k+2,p(N × [α, ω]/α) −→ W k,p(N × [α, ω]/α)

F 7−→ ∂F

∂t
+ ∆F

is a direct sum of parabolic operators in each component, and hence an isomorphism, and

K : W k+2,p(N × [α, ω]/α) −→ W k,p(N × [α, ω]/α)
F 7−→ a∇F + bF

is a compact operator because it factors through W k+1(N × [α, ω]/α). Therefore H + K is a
Fredholm map with the same index as H, which is 0. It is sufficient to check that the kernel of
H +K is trivial.

Suppose that F = (f 1, . . . , dn) ∈ ker(H +K) then fα ∈ W 2,p(N × [α, ω]/α), so fα and ∂fα

∂xi

are continuous function on N × [α, ω]. Since

∂fα

∂t
+ ∆fα = −aαiβ

∂fβ

∂xi
− bαβfβ,

by repeated use of Theorem 87 the fα are smooth for t > α.
Let e := 1

2 |F |
2 := 1

2
∑
α |fα|2, then e is continuous on N × [α, ω], vanishes on N × {α} and

one has

de

dt
= −∆e− |∇F |2 − aαiβ fα

∂fβ

∂xi
− bαβfαfβ

≤ −∆e+ 1
2C|F |

2 = −∆e+ Ce

where we used the inequality −u2−2uv ≤ v2 to bound the second and third terms. We conclude
that F = 0 since e = 0 by the following Maximum principle.
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7.5. Example: Linear heat equation.

7.5.2 Maximum principle and L∞-Comparison theorem.
With the same proof as for open set in Rn, one has the maximum principle for parabolic
equation on manifolds. The constant C in the following Theorem 89 can depend on the point
x ∈ M , but will be most of the time globally constant, since the manifold M is compact. The
following statement of Maximum principle will be sufficient for most of our application.

Theorem 89 (Maximum principle). Let f : M −→ R be a continuous function on M =
N × [α, ω] with f

∣∣∣
∂αM
≤ 0 and f

∣∣∣
∂SM
≤ 0. Suppose that whenever f > 0, f is smooth satisfies

∂f

∂t
≤ −∆f + Cf

Then in fact f ≤ 0.

With the same proof as Theorem 89, one can prove the following L∞ Comparison theorem.

Theorem 90 (L∞-Comparison theorem). Let f : M = N × [α, ω] −→ R be a continuous
function on M , smooth for time t > 0 such that

df

dt
= −∆f + a∇f + bf on N × (α, ω] (7.7)

where a is a smooth vector field and b is a smooth function on N . Then there exists B = B(a, b)
depending only on a and b such that

‖f
∣∣∣
ω
‖L∞ ≤ eB(ω−α)‖f

∣∣∣
α
‖L∞

Proof. We can suppose b ≤ −1 and prove that ‖f‖L∞(∂ωM) ≤ ‖f‖L∞(∂αM). Intuitively, this
means that since heat spreads out, the largest density must be attained at time t = α. In fact,
choose B = maxM b + 1 and define f̃ = fe−B(t−α) then ‖f̃

∣∣∣
α
‖L∞ = ‖f

∣∣∣
α
‖L∞ and ‖f̃

∣∣∣
ω
‖L∞ =

e−B(ω−α)‖f
∣∣∣
ω
‖l∞ . The function f̃ satisfies the same heat equation (7.7) as f , with b replaced

by b−B ≤ −1.
Now let us prove that under this supposition, |f | attains it maximum at time t = α. Since

we can replace the solution f of (7.7) by −f , we can suppose, for sake of contradiction, that
|f | attains it maximum on N × [α, ω] at (x∗, t∗) with |f(x∗, t∗)| = f(x∗, t∗) > 0 and t∗ > α.
Then one has

∇f(x∗, t∗) = 0,
df
dt

(x∗, t∗) ≥ 0, (this is not true if t∗ = α)
∆f(x∗, t∗) ≥ 0,
f(x∗, t∗) > 0

Plugging these in (7.7), one has a contradiction.
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7. Elliptic and parabolic equations on compact manifolds

7.5.3 Backwards heat equation and L1-Comparison theorem.
We will use backwards heat equation, which is just heat equation with the reversed sense of
time (so with the reversed sign for ∆ as well), in order to dualise the estimate of Theorem 90
and obtain a L1 estimate of f at time t = ω in term of its L1 norm at t = α. In particular, we
prove the following theorem.

Theorem 91 (L1-comparison theorem). Let a be a smooth, divergence-free vector field on a
Riemannian manifold N and b be a smooth function on N .Let f : N × [α, ω] −→ R be a
continuous function on M such that

df

dt
= −∆f + a∇f + bf on N × (α, ω]. (7.8)

Then there exists B = B(a, b) depending only on a and b such that

‖f
∣∣∣
ω
‖L1 ≤ eB(ω−α)‖f

∣∣∣
α
‖L1

Proof. Since L1 is the dual space of L∞, it is sufficient to prove that for all h ∈ C∞(N), one
has ∫

N×{ω}
fh ≤ eB(ω−α)

∥∥∥f ∣∣∣
α

∥∥∥
L1
.‖h‖L∞ .

Consider the backwards heat equation


dg
dt

= ∆g − ã∇g − b̃g, on N × [α, ω]
g
∣∣∣
ω

= h,
which is just

a heat equation on N × [α, ω] with initial condition at α if we pose g̃(t) := g(ω + α − t). The
solution g exists and is smooth on N × [α, ω]. One has, at any time t

∫
N
g∆f =

∫
N
g

(
−df
dt

+ a∇f + bf

)
∫
N
f∆g =

∫
N
f

(
dg

dt
+ ã∇g + b̃g

)

Therefore ∫
N
f
dg

dt
+ g

df

dt
=
∫
N

(a∇f)g − (ã∇g)f + (b− b̃)fg

Choose b = b̃ and ã = −a then the term (b − b̃)fg vanishes and the two first terms become∫
N ∇a(fg) = −

∫
N fg div a = 0 where div a := ∂

∂xi
ai is the divergence. Therefore one has

d
dt

∫
N fg = 0, meaning that∫

N
f
∣∣∣
ω
.h =

∫
N×ω

fg =
∫
N×α

fg ≤ ‖f
∣∣∣
α
‖L1 .‖h‖L∞ ≤ eB(ω−α)‖f

∣∣∣
α
‖L1 .‖h‖L∞

where we applied Theorem 90 to g (strictly speaking, to g̃) and B only depends on ã = −a and
b̃ = b.
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Appendix 2: Besov spaces and
Polynomial differential operators

101/137





Chapter 8

Regularity estimate of Polynomial
differential operators

Definition 15. We say that P is a polynomial differential operator of type (n, k) if P
is of the form

P (F ) =
∑

cα1,...,αν (x, F (x))Dα1F a1 . . . DανF aν

where the coefficients cα1,...,αnu depend smoothly and nonlinearly on x and F and αi ∈ RN are
indices with the weighted norm ‖αi‖ ≤ k and ∑ ‖αi‖ ≤ n.

Example 8. On M × [α, ω] the tension field τ(F ) := −∆Fα + gijΓ′αβγ(F )F β
i F

γ
j is a polynomial

differential operator of type (2,2). The quadratic term alone is of type (2,1).

8.1 A regularity estimate for polynomial differential op-
erator.

Our goal in this part is to prove the following estimate for polynomial differential operator, in
which X will be M × [α, ω].

Theorem 92 (Regularity of polynomial differential operator). Let X be a compact Riemannian
manifold, B ⊂ RN is a large Euclidean ball and P be a polynomial differential operator of type
(n, k) on X. Suppose that

r ≥ 0, p, q ∈ (1,∞), r + k < s,
1
p
>
r + n

s

1
q
. (8.1)

Then for all F ∈ C(X,B) ∩W s,q(X), one has PF ∈ W r,p(X) and

‖PF‖W r,p ≤ C (1 + ‖F‖W s,q)q/p .

where C is a constant independent of F .
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8. Regularity estimate of Polynomial differential operators

We will prove that the result is local, in a sense to be defined. Then we will prove the local
statement using Besov spaces.

Proof (reduction of Theorem 92 to a local statement). Let {ϕi : Ui −→ Vi} be an atlas of M .
We denote a point in Ui by x and its coordinates in Vi by ξ. Let ∑ψi = 1 be a partition of
unity subordinated to {Ui} and ψ̃i be smooth functions supported in Ui with 0 ≤ ψ̃i ≤ 1 and
ψ̃i = 1 in the support of ψi, as in the definition of Sobolev spaces on manifold. We suppose the
following local statement is true:

Lemma 93 (Local statement). Let P be a polynomial differential operator of type (n, k) and
coefficients cα1,...,αν (x, F ) are smooth and vanish when x ∈ RdimX is outside of a compact. Let
B ⊂ RN be a large Euclidean ball and r, p, q, s as in (8.1). Then for all compactly supported
F ∈ C(RdimX , B) ∩W s,q(RdimX), one has

‖PF‖W r,p ≤ C (1 + ‖F‖W s,q)q/p

where the constant C depends only on B and the support of F , and not on F .

One has
‖PF‖W r,p :=

∑
i

‖ψiPF‖W r,p

where viewed in the chart Ui, each ψi(x)PF (x) is ∑α ψi(ξ).cα(ξ, gi).Dαgi where gi = fi ◦ϕ−1
i is

fi viewed in the chart. Since ψ̃i = 1 in the support of ψi, one has

ψi(ξ).cα(ξ, gi).Dαgi = ψi(ξ).cα(ξ, ψ̃igi)Dα(ψ̃igi)

hence by the local statement:

‖ψi(ξ).cα(ξ, gi).Dαgi‖W r,p ≤ C
(
1 + ‖ψ̃igi‖W s,q

)q/p
≤ C (1 + ‖F‖W s,q)q/p .

Therefore ‖PF‖W r,p ≤ mC (1 + ‖F‖W s,q)q/p where m is the number of charts we used to cover
M .

Remark 37. The use of partition of unity in the last proof is to decompose PF = ∑
ψiPF

and not F = ψiF since we no longer have linearity of the operator P in F .

8.2 Review of Besov spaces Bs,p.
In this part, X = Rn coordinated by (x1, . . . , xn) with weight (σ1, . . . , σn). We define

T vj f(x1, . . . , xn) := f(x1, . . . , xj + v, . . . , xn), ∆v
j := T vj − Id

for f ∈ S(X).
For the notation, we will denote the Besov spaces by Bs,p with s ∈ R>0 \ Z and p ∈ (1,∞)

so that they look similar to Sobolev space W s,p. In a more standard notation, our spaces Bs,p

are denoted by Bs
p,p
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8.3. Proof of the local estimate.

Definition 16. We define Bs,p as the completion of S(X) under the norm

‖f‖Bs,p :=
∑
‖γ‖<s

‖Dγf‖Lp +
∑

s− σ
σj
<‖γ‖<s

sup
v

‖∆v
jD

γf‖Lp
|v|(s−‖γ‖)σj/σ

We cite here some well-known facts

1. While Sobolev spaces with non-integral regularity are complex interpolation of integral
ones, Besov spaces are their real interpolation.

2. Besov spaces Bs,p(X) are reflexive Banach spaces with their dual spaces being B−s,p′(X)
where 1

p
+ 1

p′
= 1.

Theorem 94. If r < s then

W s,p(X) ⊂ Bs,p(X) ⊂ W r,p(X).

Theorem 95 (Multiplication). For f, g ∈ S(X) and
0 < α < 1, p̃ ≤ p, q̃ ≤ q, r̃ ≤ r

1
p

+ 1
q

= 1
r
, 1
p̃

+ 1
q

= 1
p

+ 1
q̃

= 1
r̃

, one

has

‖fg‖Bα,r̃ ≤ C (‖f‖Bα,p̃‖g‖Lq + ‖f‖Lp‖g‖Bα,q̃) (8.2)
‖fg‖Lr ≤ ‖f‖Lp‖g‖Lq (8.3)

Therefore by density (8.2) is true for all f ∈ Lp ∩ Bα,p̃, g ∈ Lq ∩ Bα,q̃ and (8.3) is true for all
f ∈ Lp, g ∈ Lq.

The reason for which we use the Besov norm is the following estimate:

Theorem 96 (Composition). Let Γ(x, y) be a continuous, nonlinear function of variables x ∈
Rn, y ∈ RN . Suppose that Γ vanishes for all x outside of a compact in Rn and Γ is C-Lipschitz
in y, and define

Γf := (x 7−→ Γ(x, f(x))) .

Then
‖Γf‖ ≤ C (1 + ‖f‖Bα,p)

8.3 Proof of the local estimate.
Since Br+ε,p(X) ⊂ W r,p(X), by increasing r a bit, we can suppose that r 6∈ Z and replace the
W r,p norm in the statement by the Br,p norm, that is to estimate:

‖PF‖Br,p =
∑
‖γ‖<r

‖Dγ(PF )‖Lp +
∑

r−σ/σj<‖γ‖<r

‖∆v
jD

γ(PF )‖Lp
|v|(r−‖γ‖)σj/σ
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8. Regularity estimate of Polynomial differential operators

where
Dγ(PF ) =

∑
cβ1,...,βµ(x, F )Dβ1f b1 . . . Dβµf bµ (8.4)

with max ‖βi‖ ≤ k + ‖γ‖ and ∑ ‖βi‖ ≤ n+ ‖γ‖.
Using ∆v

j (fg) = ∆v
jf T

v
j g+f∆v

jg, one can see that ∆v
jD

γ(PF ) is a sum of terms of 2 types:

∆v
jcβ1,...,βµ T

v
j (Dβ1f b1) . . . T vj (Dβµf bµ) (8.5)

and
cβ1,...,βµ D

β1f b1 . . . Dβi−1f bi−1 ∆v
j (Dβif bi) T vj (Dβi+1f bi+1) . . . T vj (Dβµf bµ) (8.6)

Our strategy is to use Theorem 95 to estimate the terms (8.4), (8.5) and (8.6) as follows,
where we denote ‖g‖p := ‖g‖Lp∥∥∥cβ1,...,βµ(x, F ) Dβ1f b1 . . . Dβµf bµ

∥∥∥
p
≤ ‖cβ1,...,βµ‖∞.‖Dβ1f b1‖p1 . . . ‖Dβµf bµ‖pµ (8.7)

∥∥∥∆v
jcβ1,...,βµ T

v
j (Dβ1f b1) . . . T vj (Dβµf bµ)

∥∥∥
p
≤ ‖∆v

jcβ1,...,βµ‖p̃0 .‖Dβ1f b1‖p1 . . . ‖Dβµf bµ‖pµ (8.8)

∥∥∥cβ1,...,βµ D
β1f b1 . . . Dβi−1f bi−1 ∆v

j (Dβif bi) T vj (Dβi+1f bi+1) . . . T vj (Dβµf bµ)
∥∥∥
p
≤

‖cβ1,...,βµ‖∞.‖Dβ1f b1‖p1 . . . ‖Dβi−1f bi−1‖pi−1 .‖∆v
j (Dβif bi)‖p̃i .‖Dβi+1f bi+1‖pi+1 . . . ‖Dβµf bµ‖pµ

(8.9)

Then continue by bounding the ∆v
j terms:

‖∆v
jcβ1,...,βµ‖p̃0 ≤ |v|θσj/σC(1 + ‖F‖Bθ,p̃0 ) ≤ |v|θσj/σC(1 + ‖F‖W θ,p̃0 ) (8.10)

using Theorem 96, where C is the Lipschitz constant of cβ1,...,βµ(x, F ) in F , which exists because
cβ1,...,βµ is smooth and F always remains in a large Euclidean ball B. The next ∆v

j term to
bound is, using Theorem 94:

‖∆v
j (Dβif bi)‖p̃i ≤ |v|θσj/σ‖f bi‖B‖βi‖+θ,p̃i ≤ |v|θσj/σ‖f bi‖W ‖βi‖+θ,p̃i (8.11)

And finally plugging (8.10) and (8.11) in (8.8) and (8.9), and noting that ‖cβ1,...,βµ‖∞ in (8.7)
is bounded by a constant, it remains to estimate ‖f bi‖W ‖βi‖,pi , ‖f bi‖W ‖βi‖+θ,p̃i and ‖F‖W θ,p̃0 in
term of ‖F‖W s,q , for which we will use the following consequence of Interpolation inequality.

Lemma 97. Let 0 ≤ r ≤ s and p, q ∈ (1,∞) such that 0 < 1
p
− r

s
1
q
< 1 − r

s
. Then for all

compactly supported F ∈ C(X,B) ∩W s,q where B ⊂ RN is a large Euclidean ball, one has

‖F‖W r,p ≤ C‖F‖1−r/s
∞ ‖F‖r/sW s,q ≤ C ′‖F‖r/sW s,q

where C,C ′ depend only on B and the support of F , but not F .
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8.3. Proof of the local estimate.

Proof. Since F is bounded, fα ∈ W s,q ∩W 0,v for all v > 1. By Interpolation inequality

‖fα‖W r,p ≤ 2‖fα‖r/sW s,q‖fα‖1−r/s
W 0,v

then choose v with (1− r
s
) 1
v

= 1
p
− r

s
1
q
.

To apply Lemma 97, we have to choose pi, p̃i, p̃0, θ such that


0 < 1

pi
− ‖βi‖

s
1
q
< 1− ‖βi‖

s
,

0 < 1
p̃i
− ‖βi+θ‖

s
1
q
< 1− ‖βi+θ‖

s

0 < 1
p̃0
− θ

s
1
q
< 1− θ

s

We choose 1
pi

just a bit bigger than ‖βi‖
s

1
q
, 1
p̃i

just a bit bigger than ‖βi+θ‖
s

1
q
and 1

p̃0
just a bit

bigger than θ
s

1
q
. We will now come back to justify the estimates (8.7), (8.8), (8.9). Since F is

bounded in B and compactly supported in an open set V , we see that ‖fα‖p ≤ C(B, V )‖fα‖q
if p ≤ q. Therefore,

1. For (8.7), it is sufficient to have

1
p
≥ 1
p1

+ · · ·+ 1
pµ

which is true because the RHS is is a bit bigger than 1
qs

∑ ‖βi‖ ≤ n+‖γ‖
qs

< n+r
qs

< 1
p
.

2. For (8.8), it is sufficient to have

1
p
≥ 1
p̃0

+ 1
p1

+ · · ·+ 1
pµ

where the RHS is is a bit bigger than θ
s

1
q

+ 1
qs

∑ ‖βi‖ ≤ n+‖γ‖+θ
qs

.

3. For (8.9), it is sufficient to have

1
p
≥ 1
p1

+ · · ·+ 1
p̃i

+ · · ·+ 1
pµ

where the RHS is is a bit bigger than θ
s

1
q

+ 1
qs

∑ ‖βi‖ ≤ n+‖γ‖+θ
qs

.

It is sufficient then to take θ = r − ‖γ‖. Now the estimates (8.7), (8.8), (8.9) can be
continued as

RHS(8.7) ≤
∏
i

‖f bi‖‖βi‖/sW s,q ≤ ‖F‖
n+‖γ‖
s

W s,q ≤ ‖F‖q/pW s,q (8.12)

RHS(8.8) ≤ |v|θσj/σ
(
1 + ‖F‖θ/sW s,q

)∏
i

‖f bi‖‖βi‖/sW s,q ≤ |v|θσj/σ
(
1 + ‖F‖θ/sW s,q

)
‖F‖q/pW s,q (8.13)

RHS(8.9) ≤ |v|θσj/σ
(

1 + ‖f bi‖
‖βi‖+θ

s
W s,q

)∏
u6=i
‖f bu‖‖βu‖/sW s,q ≤ |v|θσj/σ

(
1 + ‖F‖

‖βi‖+θ
s

W s,q

)
‖F‖q/pW s,q

(8.14)
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8. Regularity estimate of Polynomial differential operators

While (8.12) gives ‖Dγ(PF )‖p ≤ C‖F‖q/pW s,q , the last two (8.13) and (8.14) give

∑
s− σ

σj
<‖γ‖<s

sup
v

‖∆v
jD

γ(PF )‖p
|v|(r−‖γ‖)σj/σ

≤ C
(
1 + ‖F‖(n+r)/s

W q,s

)

We proved the local statement Lemma 93.
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Part VI

Appendix 3: Parametrix and Linear
equations
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Chapter 9

A comparison theorem, Sobolev
imbeddings and Konrachov theorem
for Riemannian manifolds

In this part, we will first establish the Sobolev imbeddings theorem and the Kondrachov theorem
for Riemannian manifolds from the Euclidean version of these theorems.

Theorem 98 (Sobolev Imbedding for Rn). Given k, l ∈ Z, k > l ≥ 0 and p, q ∈ R, p > q ≥ 1.
Then

1. If 1
p

= 1
q
− k−l

n
then

W k,q(Rn) ↪→ W l,p(Rn)

is a continuous imbedding.

2. If k−r
n
> 1

q
then

W k,q(Rn) ↪→ Cr
B(Rn)

If k−r−α
n
≤ 1

q
then

W k,q(Rn) ↪→ Cr,α(Rn)

where Cr
B(Rn) denotes the space of Cr functions with bounded derivatives up to order n, equipped

with the norm ‖u‖CrB = maxl≤r sup |∇lu|, and Cr,α is the subspace of Cr
B of functions whose

rth-derivative is α-Holder, equipped with the norm ‖u‖Cr,α = ‖u‖CrB + supP 6=Q{
u(P )−u(Q)
d(P,Q)α }.

Theorem 99 (Kondrachov for Ω ⊂ Rn). Let Ω ⊂ Rn be a bounded open subset with regular
boundary and let k ∈ Z≥0 and p, q ∈ R>0 be such that 1 ≥ 1

p
> 1

q
− k

n
> 0 then

1. The imbedding W k,q(Ω) ↪→ Lp(Ω) is compact.

2. The imbedding W k,q(Ω) ↪→ Cα(Ω̄) is compact if k − α > n
q
where 0 ≤ α < 1.
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9. Sobolev spaces on Riemannian manifolds

3. The imbeddings W k,q
0 (Ω) ↪→ Lp(Ω) and W k,q

0 (Ω) ↪→ Cα(Ω̄) are compact, where W k,q
0 (Ω)

denotes the closure of C∞c (Ω) in W k,q(Ω), i.e. the subspace of functions whose trace
vanishes on the boundary of Ω.

Theorem 98 will be generalised for complete manifolds with bounded curvature and injec-
tivity radius, while Theorem 99 holds for compact Riemannian manifolds.

The generalisation will be done in 2 steps

1. Compare the volume form of the Riemannian metric g near a point and that of the
Euclidean metric on the tangent space at that point. Theorem 103 gives an equivalent
between the integral under g and the integral under Euclidean metric via the exponential
map.

2. Reasonably use partition of unity to establish global results from local results (the Eu-
clidean case). We will need a covering lemma (Calabi’s lemma), which essentially reduces
to a combinatorial result (Vitali’s covering lemma).

Finally, we will apply imbedding theorems to solve the equation −∆u = f on a Riemannian
manifold when f is square-integrable.

9.1 Quick recall of Jacobi fields, Index inequality
Definition 17. A Jacobi field is a field Y defined along a geodesic γ(t) such that

D2

dt2
Y (t) +R(Y (t), γ̇(t))γ̇(t) = 0 (9.1)

where R denotes the Riemann curvature tensor.

Remark 38. 1. Since (9.1) is linear, a Jacobi field is uniquely defined given Y (t0) and
Ẏ (t0).

2. If Y (0) ⊥ γ̇(0) and Ẏ (0) ⊥ γ̇(0) then Ẏ (t) ⊥ γ̇(t) for all t.

3. If Y, Z are Jacobi fields along γ then

〈Y, Ż〉 − 〈Ẏ , Z〉 = const

In particular, if Y, Z vanish at a same point p0 in γ then 〈Y, Ż〉 = 〈Ẏ , Z〉 on γ.

There are two ways to interpret Jacobi fields:

1. Jacobi fields are derivative of exponential maps

2. Jacobi fields are minimisers of Index form, i.e. the variation of second other of length.
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9.1. Quick recall of Jacobi fields, Index inequality

The first interpretation is the content of the following Proposition.

Proposition 100. Let Y (t) = D expp(tu).tξ be a vector field defined on a geodesic γ(t) =
expp tu. Then Y satisfies Y (0) = 0, Ẏ (0) = ξ,

Ÿ +R(Y, γ̇)γ̇ = 0,
(9.2)

hence a Jacobi field.

In concrete term, denote by ψ the exponential function at p ∈M and q = γ(r) = expp rγ̇(0),
then Proposition 100 says that if the Jacobi field Y vanishes at p = γ(0), i.e. Y (0) = 0 then Y (r)
at γ(r) is defined as follow: pull-back Ẏ (0) by ψ, transport parallelly, w.r.t to the Euclidean
metric of TpM , ψ∗Ẏ (0) from 0 to X0 = ψ−1(q), then push-forward by ψ, one obtains Y (r). See
Figure 9.1.

Figure 9.1: Jacobi fields and exponential maps.

Since Jacobi fields are derivatives of exponential maps, one can rephrase the phenomenon
of cut-locus by Jacobi fields. Historically, a point q on a Riemannian manifold is said to be a
conjugate point of p if there exists, along a geodesic connecting them, a Jacobi field vanishing
on both p and q. This means that the exponential map with origin in p degenerates at a
preimage of q. One can also prove that if q is in the cut-locus of p then at least one of the
following situation occurs

1. q is a conjugate point of p.

2. There exists 2 minimising geodesic from p to q.

For another interpretation of Jacobi fields, note that given a geodesic γ and a vector field
Z defined along γ, then the first variation of length when one varies γ by Z is 0 and the second
variation can also be calculated without difficulty.

Proposition 101 (Second variation of length). Let γ : [0, r] −→ M be a geodesic and Z be a
vector field along γ that is orthogonal to γ̇ at every point. Denote by Lλ length of the curve
t 7→ expγ(t) λZ for λ� 1, then one has

d2

dλ2Lλ

∣∣∣∣∣
λ=0

= I(Z) :=
∫ r

0

(
‖Z(t)‖2 + 〈R(γ̇(t), Z(t))γ̇(t), Z(t)〉

)
dt (9.3)

Definition 18. Let γ : [0, r] −→ M be a geodesic and Z be a orthogonal vector field along γ.
The Index form I(Z) of Z is defined by the RHS of (9.3).

Remark 39. The curvature term in (9.3) is K(γ̇, Z)‖Z‖2 where K denotes the sectional cur-
vature of M .
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9. Sobolev spaces on Riemannian manifolds

Jacobi fields can be seen as the unique minimiser of the Index form among vector fields
defined on a geodesic γ : [0, r] −→M with the same value at γ(0) and γ(r).

Theorem 102 (Index inequality). Let γ : [0, r] −→ Mn be a geodesic, p = γ(0) and q = γ(r)
such that p has no conjugate point along γ, or equivalently the exponential map in direction
γ̇(0) does not degenerate.

• Let Z be a (piecewise smooth) vector field along γ, orthogonal to γ̇ with Z(p) = 0.

• Let Y be the Jacobi field along γ with Y (0) = 0, Y (r) = Z(r) and Y is orthogonal to γ̇.
Then I(Y ) ≤ I(Z) and equality occurs if and only if Y ≡ Z.
Remark 40. Note that such Jacobi field Y exists and is unique. Firstly, by the second point
of Remark 38, one only need Y (p) = 0 and Ẏ (0) ⊥ γ(0). The Jacobi fields satisfying these
conditions form a vector space of dimension n− 1 (by Cauchy problem, Ẏ (0) is to be chosen in
the orthogonal space of γ(0)). Since the exponential map does not degenerate on the preimage
of γ, each Ẏ (0) corresponds one-to-one with an Y (r) by Proposition 100. The correspondence is
linear, with source and target spaces of same dimension (n−1), it follows that each Z(r) ⊥ γ(r)
gives uniquely a Jacobi field Y .

More concretely, let V̇i(0) be a basis of γ̇(0) in TpM and Vi be the corresponding Jacobi fields
with Vi(0) = 0, then

1. {Vi(t)}i=1,n−2 is a basis of γ̇(t) in Tγ(t)M , where the orthogonal part follows from Remark
38 and the linear independence is by the non-degeneration of since expp.

2. If Z(t) = ∑
fi(t)Vi(t), where fi are functions on [0, r], then Y (t) = ∑

i fi(r)Vi(t).
Proof. As Remark 40, let Z = ∑

i fiVi and denote W = ∑
i ḟiVi then

I(Z) =
∫ r

0

‖W‖2 + 2
∑
i

fi〈V̇i,W 〉+ 〈
∑
i

fiV̇i,
∑
j

fjV̇j〉+ 〈R(γ̇,
∑

fiVi)γ̇,
∑

fjVj〉

 dt
By definition of Jacobi field, R(γ̇, Vi)γ̇ = V̈i, hence the curvature term is∫ r

0

〈
R(γ̇,

∑
fiVi)γ̇,

∑
fjVj

〉
=
∑
i,j

∫ r

0
fifj〈V̈i, Vj〉dt =

∑
i,j

∫ r

0
fifj

(
d

dt
〈V̇i, Vj〉 − 〈V̇i, V̇j〉

)
dt

= −
∫ r

0

〈∑
i

fiV̇i,
∑
j

fjV̇j

〉
dt+ 〈Ẏ (r), Y (r)〉 − 2

∑
i,j

∫ r

0
fiḟj〈V̇i, Vj〉dt

where for the second line, we integrated by part and used the fact that 〈V̇i, Vj〉 = 〈Vi, V̇j〉 (point
3 of Remark 38). Therefore, one has

I(Z) =
∫ r

0
‖W‖2dt+ 〈Ẏ (r), Y (r)〉.

In particular I(Y ) = 〈Ẏ (r), Y (r)〉 ≤ I(Z). The equality occurs if and only if W ≡ 0, i.e.
Z ≡ Y .
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9.2. Local comparison with space forms

9.2 Local comparison with space forms
Our goal in this section is to prove the following Comparison Theorem. Before going to the
precise statement, let us explain the notation.

Notation. Given Mn a Riemannian manifold and B(p, r0) be the geodesic ball centered in
p ∈M , of radius r0 < δp the injectivity radius at p, equipped with the pullback metric of g via
exponential map expp, which can be expressed in polar geodesic coordinates as

(ds)2 = (dr)2 + r2gθiθj(r, θ)dθidθj

where ∂
∂θ1 , . . . ,

∂
∂θn−1 is an Euclidean orthonormal frame of the sphere rSn−1. We note |gθ| =

det(gθiθj)ij and gθθ be any component gθiθi for i = 1, . . . , n− 1.
Abusively, we say that sinαr

α
= r if α = 0 and sinαr = 1

i
sinh iαr and cosαr = cosh iαr if

α ∈ iR.

Remark 41. Note that the frame { ∂
∂θi
}i may not be global, for example when n is odd (Hairy

ball theorem). However the quantity |gθ| is globally defined (except at p), in fact |gθ| = r−2n+2|g|.

Theorem 103 (comparison of volume forms). Let Mn be a Riemannian manifold with

• sectional curvature −a2 ≤ K ≤ b2

• Ricci curvature Ric ≥ a′ = (n− 1)α2 where α can be real or purely imaginary.

Then with the notation of the last paragraph, for all r ∈ (0, r0),

1. If r < π
b
then

∂

∂r
log√gθθ ≥

∂

∂r
log sin br

r

gθθ ≥
(

sin br
br

)2 (9.4)

2. One has
∂

∂r
log√gθθ ≤

∂

∂r
log sinh ar

r

gθθ ≤
(

sinh ar
ar

)2 (9.5)

3. One has
∂

∂r
log√gθ ≤ (n− 1) ∂

∂r
log sinαr

r
≤ −a′ r3√

|gθ| ≤
(sinαr

αr

)n−1 (9.6)
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4. If r < π
b
then

∂

∂r
log√gθ ≥ (n− 1) ∂

∂r
log sin br

r√
|gθ| ≥

(
sin br
br

)n−1 (9.7)

Remark 42. 1. The moral of the estimates is that if r � 1 then the volume form of g,
viewed in the tangent space at p, is equivalent to the Euclidean volume form of TpM .

2. One can always choose α ∈ iR even when the Ricci curvature is positive, and RHS of
(9.6) will be a hyperbolic function and the estimate is not as sharp as if one choose α ∈ R,
but it works to prove that the two volume forms are equivalent when r � 1 .

Remark 43. A few consequences of Theorem 103:

1. For δ small, the metric volume form dV is equivalent to the Euclidean volume form of
tangent space: there exists C(δ) > 0 converging to 1 as δ → 0 such that C(δ)−1dE ≤
dV ≤ C(δ)dE.

2. Let f be a smooth function defined on B(p, δ) then the gradient of f w.r.t the metric g is
closed to the Euclidean gradient of f viewed in the chart (namely f ◦ expp):

‖∇f‖g =
∣∣∣∣∣∂f∂r

∣∣∣∣∣
2

+
∑
θ

∣∣∣∣∣∂f∂θ (r, θ)
∣∣∣∣∣
2

gθθ

‖∇(f ◦ expp)‖E =
∣∣∣∣∣∂f∂r

∣∣∣∣∣
2

+
∑
θ

∣∣∣∣∣∂f∂θ (r, θ)
∣∣∣∣∣
2

3. Combining the last 2 points, one can see that if f is supported in a small geodesic ball
B(p, δ), then the Lp-norm of ∇f is closed to the Euclidean Lp norm of ∇(f ◦ expp) if δ
is sufficiently small.

The ideal to prove Theorem 103 comes from Proposition 100 and Figure 9.1. Given a point
q ∈ M of distance r < r0 from p, then denote by Y the Jacobi field along the unique geodesic
connecting p and q such that Y vanishes at p and Y (r) = ∂

∂θ
at q, then with ψ = expp as in

Figure 9.1,

‖Y (r)‖2 = ‖ψ∗X0Y (r)‖2 = ‖ψ∗0Ẏ (0)‖2
X0

= r2gθθ‖ψ∗0Ẏ (0)‖2
0 = r2gθθ‖Ẏ (0)‖2 (9.8)

where we used the fact that

g

(
∂

∂θi

∣∣∣∣∣
rSn−1

,
∂

∂θj

∣∣∣∣∣
rSn−1

)
= r2g

(
∂

∂θi

∣∣∣∣∣
Sn−1

,
∂

∂θj

∣∣∣∣∣
Sn−1

)
= r2gθiθj
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.
Take logarithm and derive (9.8) w.r.t r, using the fact that ‖Y (r)‖ = 1, one obtains

〈Ẏ (r), Y (r)〉 = 1
r

+ ∂

∂r
log gθθ (9.9)

It comes to estimate 〈Ẏ (r), Y (r)〉, which is in fact the Index form of Y . The following lemma
give an estimate of the Index form in case of bounded sectional curvature, by comparing the it
with the Index form under a metric with constant sectional curvature.

Lemma 104. Suppose that the sectional curvature K ≤ b2, then for every Jacobi field Y defined
a long a geodesic γ : [0, r] −→M with r < π

2b such that Y (0) = 0, Y ⊥ γ̇. Then

I(Y ) ≥ Ib(Y ) :=
∫ r

0
‖Ẏ ‖2 − b‖Y ‖2 ≥ b cot br‖Y (r)‖2

Proof. By the curvature bound, I(T ) ≥
∫ r

0 ‖Ẏ ‖2 − b2‖Y ‖2 =: Ib(Y ). The quantity Ib(Y ) is
exactly the Index form of Y along γ if the sectional curvature in constantly b. To be precise,
we equip the tubular neighborhood of γ a metric g′ of constant sectional curvature K = b2 such
that normal vectors of γ w.r.t the metric g remain normal under g′. Such g′ is in fact easy to
find since:

1. The tubular neighborhood is diffeomorphic to [0, r]×Bn−1 where the diffeomorphism (says
ι1) is actually isometry at points of γ, which are mapped to [0, r]× {0};

2. Also, there exists a diffeomorphism ι2 mapping [0, r] × Bn−1 to a tubular neighborhood
of an arc γ̃ of length r on the grand circle of Sn1/b which is isometry on every point of
[0, r]× {0}. This is because r < π

2b < 2π 1
b
the length of the grand circle.

3. One now can identify a tubular neighborhood of γ inM and that of γ̃ in Sn1/b by ι = ι2◦ι1.
Take g′ to be the pullback of the Eucidean metric on Sn1/b, which is of sectional curvature
b2.

Now under the metric g′, Y is no longer a Jacobi field, but it is still orthogonal to γ, denote
by Ỹ the Jacobi field (under g′) on γ that vanishes at γ(0) and has the same value as Y at
γ(r). By Theorem 102 (Index inequality), one has Ib(Y ) ≥ Ib(Ỹ ). The latter can be computed
directly, as the field ι∗Ỹ is given by

s 7→ (s, β1 sin bs, . . . , βn−1 sin bs), s ∈ [0, r]

where (β1, . . . , βn−1) is the coordinates of ι1∗Y (r) in [0, r] × Bn−1, hence in this coordinates
(also called Fermi coordinates), Ỹ (s) =

(
s, sin bs

sin brY (r)
)
. Hence Ib(Ỹ ) = b cot br‖Y (r)‖2.

Now the remaining part of the proof of Theorem 103 is straightforward.
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Proof of Theorem 103. From (9.9) and Lemma 104, one has

∂

∂r
log√gθθ = I(Y )− 1

r
≥ b cot br − 1

r

This gives the estimates in (9.4).
For (9.5), the sign situation fits Theorem 102 better, and one does not need to explicitly

evoke the space forms (as Lemma 104). It suffices to see that

〈Ẏ (r), Y (r)〉 = I(Y ) ≤ I

(
sinh at
sinh arY (r)

)

≤ a2

∫ r

0

(
cosh at
sinh ar

)2

+
∫ r

0

(
sinh at
sinh ar

)2

dt

 ‖Y (r)‖2

= a coth ar‖Y (r)‖2

The estimates in (9.6) comes from the comparison between Y and the field t 7→ sinαt
sinαrY (r).

Note that the field is well-defined even when α ∈ R>0 (the hyperbolic case (α ∈ iR>0 being
obvious). This in fact comes from the following fact:

Theorem 105 (Myers). Let Mn be a connected, complete manifold with Ric ≥ (n− 1)α2 > 0
then

1. M is compact.

2. The diameter of M is at most π/α.

Taking sum of inequalities I(Yi) ≤ I( sinαt
αr

Yi(r) where Yi are Jacobi fields vanishing at γ(0)
and whose values at γ(r) are ∂

∂θi
respectively, one has

n−1∑
i=1
〈Ẏi(r), Yi(r)〉 ≤ (n− 1)α2

∫ r

0

(cosαt
sinαr

)2
dt−

n−1∑
i=1

∫ r

0
Rrθirθi

( sinαt
sinαr

)2
dt

≤ (n− 1)α cotαr

where for the second line, we used the fact that ∑iRrθirθi = Ricrr ≥ (n− 1)α2. Hence

∂

∂r
log

√
|gθ| =

∂

∂r

∑
i

log
√
|gθiθi | =

∑
i

〈Ẏθi , Yθi〉 −
n− 1
r

≤ (n− 1)
(
α cotαr − 1

r

)
= (n− 1) ∂

∂r
log

(sinαr
r

)
The proof of (9.7) is essentially the same as (9.6) where one uses (9.4) for a lower bound of

I(Yi) = 〈Ẏi(r), Yi(r)〉.

As a side note, Lemma 104 can also be used to prove that a small geodeosic ball is geodesi-
cally convex.
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9.3. Some covering lemmas

Proposition 106. Let Mn be a Riemannian manifold with sectional curvature K ≤ b2 and
injectivity radius δ > 0. Then for every r < min{ δ2 ,

π
4b}, any geodesic ball B(p, r) is geodesically

convex, i.e. any two points is connected by a geodesic curve inside the ball.

Proof. We first claim that

Lemma 107. Given two point p, q of distance d(p, q) = r < π
2b and Γp,q the geodesic connecting

the them. Let γ be a geodesic staring from q with a velocity vector perpendicular to Γp,q, then
there exists a neighborhood of q inside of which the γ intersects Γp,q only at q.

First, let us prove that the Lemme implies Proposition 106. If r small as in the Proposition
and q1, q2 ∈ B(p, r) then

1. There exists a minimal geodesic Γq1,q2 connecting q1, q2.

2. By triangle inequality, Γq1,q2 ⊂ B(p, 2r): every point q ∈ Γq1,q2 has to be d(q1, q2)/2-closed
to one qi, hence d(p, q) ≤ d(p, qi) + d(qi, q) ≤ r + 2r

2 = 2r.

Let T ∈ Γq1,q2 be the point minimising the distance to p. It suffices to show that T is one of
the qi. For the sake of contradiction, if T is strictly in the interior of Γq1,q2 then

1. The geodesic Γp,T connecting p and T is orthogonal to Γq1,q2 at T . It is not difficult to
prove that if the two are not orthogonal then there exist T ′ ∈ Γq1,q2 and S ∈ Γp,T , both
being near to T , such that d(p, T ) > d(p, S) + d(S, T ′) ≥ d(p, T ′).

2. The ball B(p, d(p, T )) ∩ Γq1,q2 ⊃ Γq1,q2 .

These contradict the Lemma and prove that T does not lie in the interior.
It remains to prove the Lemma. Let Y be the Jacobi field which vanishes at p and whose

value at q is γ̇, then by Index inequality (Theorem 102), it suffices to prove that I(Y ) > 0,
because any variation of Γp,q by orthogonal vector field Z along γ has I(Z) > 0 hence only
increases the length, according to Proposition 101. But by Lemma 104 gives

I(Y ) ≥ Ib(Y ) ≥ b cot br‖Y (q)‖2 > 0 if r < π

2b.

9.3 Some covering lemmas
The goal of this section is to prove a covering lemma for Riemannian manifolds with injectivity
radius δ0 > 0 and bounded curvature (Lemma 110). We start with a covering lemma that not
yet requires curvature bound.
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Lemma 108 (Calabi). Let Mn be a Riemannian manifold with injectivity radius δ0 > 0, then
for all δ ∈ (0, δ0), there exists 0 < γ < β ≤ δ and a partition of M = ⊔

i∈I Ωi and pi ∈ Ωi such
that

B(pi, γ) ⊂ Ωi ⊂ B(pi, β)

Moreover, one can choose γ = β/10 and β = δ.

Proof. Note that it is enough to have
⋃
iB(pi, β) = M, 2γ < β

B(pi, 2γ) are disjoint
(9.10)

In fact, let Ω′i = B(pi, β) \ ∪j 6=iB(pj, γ) then

B(pj, γ) ∩ Ω′i = ∅, B(pi, γ) ⊂ Ω′i ⊂ B(pi, β)⋃
i Ω′i = M

(for ⋃i Ω′i = M : If x ∈ M satisfies x ∈ B(pj, γ) ⊂ B(pi, β) then there is no other j′ 6= j such
that x ∈ B(pj′ , γ), hence x ∈ Ωj. Now choose

Ω1 = Ω′1,Ω2 = Ω′2 \ Ω1, . . . ,Ωn = Ω′n \ ∪n−1
i=1 Ωi, . . .

For the existence of (9.10), use the following Vitali covering lemma, whose proof is purely
combinatorial in nature.

Lemma 109 (Vitali covering, Infinite version). Let {Bj : j ∈ J} be a collection of balls in a
metric space such that

sup{rad(Bj) : j ∈ J} < +∞

where rad denotes the radius, then there exists a countable subfamily J ′ ⊂ J such that {Bj :
j ∈ J ′} are disjoint and

∪j∈JBj ⊂ ∪j∈J ′5Bj.

It remains to apply the lemma for the covering M = ∪x∈MB(x, 2γ), which also allows us to
choose γ = β/10 and β = δ.

Lemma 110 (Uniformly locally finite covering). Let Mn be a Riemannian manifold with in-
jectivity radius δ0 > 0 and bounded curvature, then for all δ < δ0 sufficiently small, there exists
a uniformly locally finite covering of M by balls {B(pi, δ)}i∈I , i.e. there exists k(δ) ∈ Z>0

such that for all q ∈ M , there exists a neighborhood of q that intersects at most k(δ) balls.
Moreover, one can also require that {B(pi, δ/2)}i∈I is still a covering.

Proof. We will apply Lemma 108 with β = δ/2 and γ = β/10, then for all δ � δ0, the
covering {B(pi, 2β)} satisfies. In fact, for every q ∈ M , take B(q, δ) as a neighborhood of q
then B(pi, 2β)∩B(q, γ) 6= ∅ if and only if pi ∈ B(q, 2β+γ) Since the balls B(pi, γ) are disjoint,
the number of pi in B(q, 2β + γ) is bounded by

k = max volg(B2β+2γ)
min volg(Bγ)

≤ C(δ)
(

2β + 2γ
γ

)n
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where max volg(B2β+2γ) and min volg(Bγ) denote the maximum and minimum volume of balls
of radius 2β+ 2γ and γ, respectively. By Theorem 103, for δ < ε(a′, b) depending on the bound
a′ and b of Ricci curvature and sectional curvature, the volume of these balls are equivalent
to that of Euclidean balls of the same radius. The constant of equivalence was denoted by
C(δ).

9.4 Sobolev imbeddings for Riemannian manifolds
The goal of this section is to prove that Sobolev imbeddings are also available for complete
Riemannian manifold with bounded curvature and strictly positive injectivity radius, that is,
the following results.

Theorem 111 (Sobolev imbeddings). Theorem 98 holds when one replaces Rn by a complete
Riemannian manifold of dimension n with bounded curvature (sectional and Ricci) and injec-
tivity radius δ0 > 0.

The definition of Sobolev spaces as completion of spaces of smooth functions, w.r.t the
Sobolev norms generalises on Riemannian manifolds, namely, we denote by W k,p

0 (M) the com-
pletion of C∞c (M) w.r.t the norm ‖ϕ‖Wk,p = ‖ϕ‖Lp + ‖∇ϕ‖Lp + · · ·+ ‖∇kϕ‖Lp where ‖∇lϕ‖Lp
are computed as follow: the metric g induces a fiberwise norm for l-covariant tensors, integrate
that of ∇lϕ, one obtains ‖∇lϕ‖Lp .

Similarly, the space W 1,p(M) is defined as the completion of C∞(M) w.r.t ‖ · ‖W 1,p .

Remark 44. 1. Unlike the Euclidean case, one does not define the derivatives term, e.g.
∇vf for f ∈ W 1,p(M) using integration by part and Riesz representation, that is, one
does not expect a formular such as

∫
M(∇vf)ϕdV = −

∫
M f∇vϕdV since the "boundary

term"
∫
M ∇v(fϕ)dV does not vanish, even if fϕ ∈ C∞c (M).

2. The exterior derivative df can be defined, which is in fact equivalent to de Rham’s notion
of current.

3. The term ∇lf for f ∈ W k,p(M), when needed, can be defined as a Lp section of (TM∗)⊗l
giving by the Lp limit of smooth sections ∇lϕi for an equivalent class of Cauchy sequence
ϕi representing f . The completeness of the space of Lp sections of a vector bundle follows
from the result in each trivialising chart and the fact that restriction maps commute with
the limit.

Proposition 112 (W 1,p = W 1,p
0 ). If M is complete then C∞c (M) is dense in W 1,p(M), equiv-

alently W 1,p(M) = W 1,p
0 (M).
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Proof. It suffices to prove that given a function ϕ ∈ C∞(M), one can approximate ϕ under the
norm ‖ · ‖W 1,p by functions in C∞c (M). Fix P ∈ M , one uses a cut-off function χj which is
1 on [0, j], 0 on [j,∞] and linear inside and defines ϕj(Q) = ϕ(Q)χj(d(Q,P )). Note that the
distance function is only Lipschitz and not necessarily smooth (so we did not mind taking a
linear cut-off). However, since ϕj is compactly support and Lipschitz and we can approximate
each ϕj by a sequence in C∞c (M): Let Kj be the support of ϕj and {αi}i be a finite partition
of unity subordinating to an open coordinated cover of K. Since αiϕj is Lipschitz, viewed in a
chart, it can be W 1,∞-approximated by smooth functions, due to the following fact.

Fact. If Ω ⊂ Rn be a bounded domain with δΩ regular, then Lip(Ω) = W 1,∞(Ω).
The approximation scheme looks like ϕ ≈ ϕj ≈

∑
i αi,Kjϕj ≈

∑
i ψi,j where ψi,j are smooth

and compactly support.

Remark 45. The similar results for higher orders are complicated, for example, one can prove
that W 2,p

0 = W 2,p under the hypothesis of bounded curvature and strictly positive injectivity
radius. The third order requires extra conditions.

The second part of the Theorem 111 is local in nature, and therefore easier. We will prove
this second part by accepting the first one, which we will come back and prove eventually.

For the imbedding into Cr
B(M), it suffices to establish the case W 1,q ↪→ C0

B, the higher
order case then follows: If ϕ ∈ W k,q then ∇rϕ ∈ W k−r,q ↪→ W k−r,q ↪→ W 1,q̃ ↪→ C0

B where
1
n
≥ 1

q̃
≥ 1

q
− k−r−1

n
.

Similarly, for the imbedding into Cr,α(M), it suffices to establish the case W 1,q ↪→ C0,α for
1−α
n
≥ 1

q
.

Since W 1,p(M) = W 1,p
0 (M), it suffices to prove the following Lemma 113 and Lemma 114.

Lemma 113 (W 1,q ↪→ C0
B). Let Mn be a complete Riemannian manifold with injectivity radius

δ0 > 0 and sectional curvature K ≤ b2, then for all ϕ ∈ C∞c (M), one has

sup
M
|ϕ| ≤ C(q)‖ϕ‖W 1,q , ∀q > n

Proof. Take δ < min{δ0,
π
2b} and let (r, θ) be the geodesic polar coordinate centered at P ∈M ,

then by Theorem 103, the ratio of the metric volume form dV := |g|dE and the Euclidean
volume form dE of TPM is

√
|gθ| ≥

(
sin br
br

)n−1
≥ ( 2

π
)n−1.

let χ : R≥0 −→ R be a cut-off function which is constantly 1 near 0 and supported in [0, δ).
Then

ϕ(P ) = −
∫ δ

0
∂r (ϕ(r, θ)χ(r)) dr, ∀θ ∈ Sn−1
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Integrate w.r.t θ ∈ Sn−1, recall that ωn denotes the volume of Sn−1:

|ϕ(p)| ≤ (ωn−1)−1
∫
B
|∇(ϕ(r, θ)χ(r))| r1−nrn−1drdθ

≤ (ωn−1)−1
(∫

B
|∇(ϕ(r, θ)χ(r))|q dE

)1/q
(
ωn−1

∫ δ

0
r(n−1)(1−q)dr

)1/q′

≤ (π2 )n−1(ωn−1)−1/q
(
‖∇ϕ‖Lq + sup

[0,δ]
|χ′|‖ϕ‖Lq

)(
q − 1
q − n

δ
q−n
q−1

)1/q′

where q′ denotes the Hölder conjugate of q and for we used Hölder inequality w.r.t dE for the
second inequality and the comparison dE ≤ (π2 )n−1dV for the third. The conclusion follows.

Lemma 114 (W 1,q ↪→ C0,α). Let Mn be a complete Riemannian manifold with injectivity
radius δ0 > 0 and bounded curvature, then for all ϕ ∈ C∞c (M), one has

sup
M
|ϕ|+ sup

P 6=Q
|ϕ(P )− ϕ(Q)| d(P,Q)−α ≤ C(α, q)‖ϕ‖W 1,q , for all 1− α

n
≥ 1
q

Proof. By Lemma 113, one can discard the term supM |ϕ| and only need to treat the second
term of LHS. Let δ ≤ min{δ0,

π
2b} as in the proof of Lemma 113 (b2 being the upper bound of

the sectional curvature). One only need to consider the case where d = d(P,Q) < δ/2 because
otherwise |ϕ(P )− ϕ(Q)| ≤ 2‖ϕ‖L∞( δ2)−αd(P,Q)α.

Let O be the midpoint of P,Q, and denote by h := ϕ ◦ expO defined on the Euclidean ball
B(0, 2d) ⊃ BO := B(0, d/2). We also denote by P,Q the preimages of these points in BO. See
Figure 9.4.

Figure 9.2: Left: the picture viewed in normal polar coordinates at O. Right: the picture
viewed in normal polar coordinates at Q.

Now place BO in polar coordinate centered at Q:

h(x)− h(Q) =
∫ r

0

∂

∂r
h(r, θ)dr = r

∫ 1

0

∂

∂ρ
h(rt, θ)dt
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Integrate on BO 3 x w.r.t to the measure dEQ given by the normal polar coordinates at Q:

∫
BO
|h(x)− ϕ(Q)|dEQ ≤

∫
θ∈Sn−1

∫ ρ(θ)

r=0
rn−1r

∫ 1

0
| ∂
∂ρ
h(rt, θ)|dtdrdθ

(u := rt, ρ(θ) ≤ d) ≤
∫
θ∈Sn−1

∫ 1

t=0

∫ td

u=0
t−n−1un

∣∣∣∣∣ ∂∂ρh(u, θ)
∣∣∣∣∣ dtdudθ

=
∫ 1

t=0
t−n−1

(∫ td

u=0

∫
θ∈Sn−1

∣∣∣∣∣ ∂∂ρh(u, θ)
∣∣∣∣∣u.dEQ

)
dt

(Holder w.r.t dEQ) ≤
∫ 1

t=0
t−n−1

(∫ td

u=0

∫
θ∈Sn−1

∣∣∣∣∣ ∂∂ρh(u, θ)
∣∣∣∣∣
q

dEQ

)1/q (∫ td

0
ωn−1u

q′un−1du

)1/q′

dt

(t ≤ 1) ≤
∫ 1

t=0
t−n−1

(
1

q′ + n
(td)q′+n

)1/q′ (∫ d

u=0

∫
θ∈Sn−1

|∇ϕ|qdEQ
)1/q

dt

= C1(q, n)d1+ n
q′

(∫
B(Q,d)

|∇ϕ|qdEQ
)1/q

(9.11)

Now using the fact that 1
A
dV ≤ dEQ ≤ AdV since the curvature is bounded, one has

∫
B(O,d/2)

|ϕ(x)− ϕ(Q)|dV ≤ C2(q, n)d1+ n
q′ ‖∇ϕ‖Lq

Taking sum with the same computation for P , one has

|ϕ(P )− ϕ(Q)| volg(B(O, d/2)) ≤ 2C2(q, n)d1+ n
q′ ‖∇ϕ‖Lq

since volg(B(O, d/2)) ≥ A−1ωn−1d
n, one has

|ϕ(P )− ϕ(Q)| ≤ C3(q, n)‖∇ϕ‖Lqd1−n/q

The conclusion follows since 1− n
q
≥ α.

For the first part of Theorem 111, it suffices to prove the case k = l+ 1, that is, there exists
a constant C1, C2 > 0 such that ‖u‖Lp ≤ C1‖∇u‖Lq +C2‖u‖Lq for u ∈ W 1,q(M) and 1

p
= 1

q
− 1

n
.

The proof by [Aub98] tries to optimise the constant C1, in an attempt to find the best
inequality [Aub98, page 50]. We will follow their arguments, as the extra effort is not much.
We will prove that

Proposition 115. Given p, q ∈ R>0 such that 1
p

= 1
q
− 1

n
> 0, for any ε > 0, there exists Aq(ε)

such that
‖u‖p ≤ (K(n, q) + ε)‖∇u‖Lq + Aq(ε)‖u‖Lq
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The appearance of the constant K(n, q), given by

K(n, q) :=


q−1

n(q−1)

[
n−q
n(q−1)

]1/q [ Γ(n+1)
Γ(n/q)Γ(n+1−n/q)ωn−1

]1/n
, if q > 1

1
n

(
n

ωn−1

)1/n
, if q = 1

is due to the following local result.

Theorem 116 (Aubin). Given 1 ≤ q < n and u ∈ W 1,q(Rn), with 1
p

= 1
q
− 1

n
, one has

‖u‖Lp ≤ K(n, q)‖∇u‖Lq .

In fact, K(n, q) this the norm of the imbedding W 1,q(Rn) ↪→ Lp(Rn).

We will accept the local result and use the Covering Lemma 110 to prove Proposition 115,
which implies Theorem 111.

Proof of Proposition 115. Note that given any smooth function f supported in a small geodesic
ball B(q, δ), by applying theorem 116 to the f , viewed in the chart (that is, f ◦ expq) and use
the fact that C(δ)−1‖∇(f ◦ expq)‖Lq(dE) ≤ ‖∇f‖Lq(dV ) ≤ C(δ)‖∇(f ◦ expq)‖Lq(dE) (see remark
43), one has

‖f‖Lp ≤ Kδ(n, q)‖∇f‖Lq

where Kδ(n, q) converges to K(n, q) as δ → 0.
It suffice to cover M by geodesic ball B(Qi, δ) such that there exists a partition of unity

subordinated to B(Qi, δ) such that ‖∇(h1/q
i )‖ ≤ H = const. In fact for ϕ ∈ W 1,q(M), one has

‖ϕ‖qp =
(∫

M
|ϕ|p

)q/p
=
∫

M

(∑
i

|ϕ|qhi
)p/qq/p

(since p ≥ q) ≤
∑
i

(∫
M

(|ϕ|qhi)p/q
)q/p

=
∑
i

∥∥∥ϕh1/q
i

∥∥∥q
p

≤ Kq
δ (n, q)

∑
i

∥∥∥h1/q
i ∇ϕ+ ϕ∇h1/q

i

∥∥∥q
q

Using the fact that there are at most k(δ) balls overlapping at a point and that (a + b)q =
aq
(
1 + b

a

)q
≤ aq(1 + 2q b

a
+ 2q( b

a
)q) ≤ aq + 2qbaq−1 + 2qbq, one has

‖ϕ‖qp ≤ Kq
δ (n, q)

(
‖∇ϕ‖qq + 2qk(δ)Hq−1

∫
M
|ϕ|q−1|∇ϕ|+ 2qk(δ)Hq‖ϕ‖qq

)
≤ Kq

δ (n, q)
[
‖∇ϕ‖qq + 2qk(δ)Hq−1‖∇ϕ‖q‖ϕ‖q−1

q + 2qk(δ)Hq‖ϕ‖qq
]

It is elementary to see that this implies ‖ϕ‖qp ≤ (1 + ε)qKq(n, q)
[
(1 + ε)‖∇ϕ‖qq + A(ε)‖ϕ‖qq

]
,

from which the conclusion follows.
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For the existence of such hi, one cover M by balls B(Qi, δ) using Lemma 110. Denote by
ϕi : B(Qi, δ) −→ B(0, δ) the inverse of exponential maps and let u : Rn −→ R be the smooth
function, choose u to be a bell curve with maximal value 1 at 0, supported in B(0, δ) and u ≤ 1

2
in B(0, δ/2) and pose ui = u ◦ ϕi. Then

‖∇ui‖gM ≤ C1(gM , δ)‖∇u‖E = C2(gM , δ)

Pose hi = umi∑
umj

with m > q then

∣∣∣∇(h1/q
i )

∣∣∣ =

∣∣∣∣∣∣mq u
m
q
−1

i ∇ui
(∑umj )1/q + u

m/q
i

(
−1
q

) ∑∇(umj )
(∑umj )1+ 1

q

∣∣∣∣∣∣
≤ m

q.2−m/q |∇ui|+
1
q

∑
m
|∇uj|

(2−m)1+ 1
q

≤
(
m

q
2m/q + m

q
2m(1+ 1

q
)k(δ)

)
C2(gM , δ) = const

where k(δ), as in Lemma 110, is the upper bound of number of balls overlapping at the point
in question.

9.5 Kondrachov’s theorem
The generalised version of Kondrachov’s theorem is much easier to prove

Theorem 117 (Kondrachov). Theorem 99 holds when one replaces Ω by a compact Riemannian
manifolds of dimension n.

Proof. Cover M by finitely many small geodesic ball B(Qi, δ) subordinating a partition of
unity ∑N

i=1 χi = 1, then if a sequence {un}n ⊂ W k,q is bounded then {χiun}n is also bounded
in W k,q. The conclusion follows using Remark 43 and the Euclidean version of Kondrachov’s
theorem.

9.6 Solving ∆u = f on a Riemannian manifold.
With Kondrachov’s theorem 117, one can uses the familiar "subsequence extracting" technique
to find a minimiser of the quadratic functional ψ 7→ 1

2
∫
M ‖∇ψ‖2dV in a suitable subspace of

W 1,2(M) (method of Lagrange multiplier), one can prove the following results.

Theorem 118 (Spectrum of ∆). Let Mn be a compact Riemannian manifold then

1. The eigenvalues of ∆−∇ν∇ν are ≥ 0.
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2. The eigenfunctions of δ0 = 0 are constant functions.

3. The eigenvalue λ1 is the minimum value of the functional

ψ 7→ 1
2

∫
M
‖∇ψ‖2dV

on the subspace {ψ ∈ W 1,2(M) : ‖ψ‖2 = 1,
∫
ψdV = 0}. Moreover, first eigenfunctions

are smooth.

Theorem 119. Given Mn be a compact Riemannian manifold, consider the Laplace equation
on M :

∆u = f (9.12)

where f ∈ L2(M), then:

1. There exists u ∈ W 1,2(M) satisfying (9.12) in the weak sense if and only if
∫
M fdV = 0

2. u is unique up to an additive constant.

3. If f ∈ Cr,α then u ∈ Cr+2,α.
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Chapter 10

Parametrix and Green’s function of
Laplacian operator on Riemannian
manifolds

Recall that in the Euclidean space Rn, one obtains a representation of the solution u of equation
∆u = f by

• first solving for an explicit radial solution of ∆G = δ0. In particular, G = [(n −
2)ωn−1]−1r2−n if n > 2 and G = −(2π)−1 log(r) if n = 2

• then tensoring G by f , one has the solution u = G ∗ f of ∆u = f

To generalise this argument for Riemannian manifolds, there are a few points that have to
be modified:

1. Since it does not make sense to add/substract points of a manifold, one will need to find
different fundamental solutions for different points, so instead of fundamental solution,
we will find the Green’s function G = G(p, q)(p, q ∈M). The convolution will be replace
by the following operation on functions X, Y defined on (M×M)\∆M where ∆M denotes
the diagonal:

(X ∗ Y )(p, q) =
∫
M
X(p, r)Y (r, q)dV (r)

.

2. The distance function q 7→ d(p, q) is only smooth near p, outside of the cut-locus, the
best one can says is that the function is Lipschitz. Since cut-loci are almost impossible
to calculate or visualise (the cut-locus of an ellipsoid is still a conjecture, according to
[Ber03]), one will cut-off the Euclidean solution, try to solve the equation near p and later
add a correcting term. This inspires the definition of parametrix.
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3. Another reason that we have to approximate the exact solution by parametrix, that
also explain the iteration in Theorem 122, is that the expression of Laplacian, even in
the geodesic polar coordinate and even near the origin, involves the metric, hence the
Euclidean fundamental solution is not yet a solution even near the origin.

Remark 46. To give a simplified analogy of what we will be doing, let us prove the existence
of "Green’s function" on Riemann surfaces (with boundary, so that we do not have to deal with
the volume). The "Laplace equation" is

− 2i∂∂̄g = δ0 (10.1)

where the LHS is a 2-form and the RHS is a generalised 2-form in the sense of current.
Contrary to the previous point 3, one knows the exact local solution of (10.1), namely z 7→
−(2π)−1 log(|z|). Therefore, the argument will be simplified as:

• Given a holomorphic chart of a point 0 ∈ M , pose h(z) := −(2π)−1 log(|z|)χ(|z|) where
χ is a cut-off function that is 1 on a neighborhood of 0

• The 2-form α = −2i∂∂̄h is well-defined everywhere except 0, and vanishes on a neighbor-
hood of 0. Denote by αnaiv its extension to M .

• Recall the fact that every smooth 2-form on a compact, connected, Riemann surface with
boundary can be writen as αnaiv = −2i∂∂̄ϕ, pose g = h− ϕ.

For Riemann surface without boundary, the equation is −2i∂∂̄g = δ0 − 2i
∫
M ∂∂̄g and the

fact to evoke is that any smooth 2-form α with
∫
M α = 0 is of form α = −2i∂∂̄ϕ

We will suppose that Mn is a Riemannian manifold with injectivity radius δ0 > 0, and of
bounded curvature. Compact manifolds, for example, fall in this category.

10.1 Parametrix and the Green’s formula
Definition 19. A Green’s function G(p, q) of a compact Riemannian manifold is a function
defined on (M ×M) \∆M such that

1. ∆dist
q G(p, q) = δp(q) if M has boundary.

2. ∆dist
q G(p, q) = δp(q)− V −1

where ∆dist
q concerns the distribution derivatives and V is the volume of M .

Let p, q ∈M be distinct points, the parametrix H is defined by

H(p, q) =

[(n− 2)ωn−1]−1r2−nχ(r), if n > 2
−(2π)−1χ(r) log r, if n = 2

where r = d(p, q), χ : R≥0 −→ R is smooth, χ = 1 in a neighborhood of 0 and χ(t) = 0 if
t > δ0.
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Recall that in the geodesic polar coordinates, i.e. the polar coordinates on the tangent TpM
at p ∈M , identified with a neighborhood of p ∈M , the metric g is given by

g : ds2 = dr2 + r2gθiθj(r, θ)dθidθj

and one denotes |gθ| := det(gθiθj), therefore |g| = det(gij) = r2(n−1)|gθ|

Lemma 120. If a function ϕ ∈ C2 defined locally around p ∈M and ϕ is radial, i.e. ϕ = f(r)
in a small geodesic ball B(p, δ) then

−∆ϕ = f ′′ + n− 1
r

f ′ + f ′∂r log
√
|gθ|

Proof. One has

∆ϕ = −Tr
(
∇i(gkj∂jϕ ek)

)
i,k

= −∂i(gij∂jϕ)− gkj∂jϕΓiik
= −|g|−1/2∂i(gij|g|1/2∂jϕ)

since Γiik = ∂k log
√
|g| = ∂i|g|

2|g| . One concludes by substituting |g| = r2n−2|gθ| and noticing that
grθi = gθiθj = 0 (i 6= j).

Remark 47. 1. The Laplacian of the metric g, viewed in polar geodesic coordinates centered
at p, i.e. in the tangent space TpM is not the Euclidean Laplacian of TpM , however the
difference if O(r) since ∂r log

√
|gθ| ≤ Ar where the bound A is given by Ricci curvature,

see the Volume comparison theorem.

2. Applied the formula for q 7→ H(p, q), one has

∆naiv
q H(p, q) = [(n− 2)ωn−1]−1r1−n

(
(n− 3)χ′ − rχ′′ + ((n− 2)χ− rχ′)∂r log

√
|gθ|

)
(10.2)

therefore ∆naiv
q H(p, q) ≤ Br2−n where B does not depend on p.

3. Unlike the case of Remark 46 where we know the exact fundamental solution and the
form αnaiv has no singularity, there is no reason for that this holds true for ∆naiv

q H(p, q).
However, we proved that the order of singularity at q = p can be controlled.

Proposition 121 (Green’s formula). For any function ψ ∈ C2(M), one has

ψ(p) =
∫
M
H(p, q)∆ψ(q)dV (q)−

∫
M

∆naiv
q H(p, q)ψ(q)dV (q) (10.3)

where ∆naiv
q H(p, q) denotes the pointwise derivative of H(p, q), not the distribution derivative.

Remark 48. 1. In other words, the theorem says that ∆dist
q H(p, q) = ∆naiv

q H(p, q) + δp(q)
where ∆dist

q is the distribution derivative. In particular, if there is no concern about
regularity of the distance function d(p, q) (as in the Euclidean case), allowing us to take
the cut-off function χ = 1 in the definition of parametrix, then ∆naiv

q H(p, q) = 0 and
∆dist
q H(p, q) = δp(q) which is not a surprise since H(p, q) is also the Green’s function.
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2. Taking ψ = 1, one has ∫
M

∆naiv
q H(p, q) = −1

3. Multiplying (10.3) by φ(p) and integrate over M , one has∫
M
φ(q)ψ(q)dV (q) =

∫
M

(∫
M
H(p, q)φ(p)dV (p)

)
∆ψ(q)dV (q)−

∫
M

(∫
M

∆naiv
q H(p, q)φ(p)

)
ψ(q)dV (q)

hence in distribution sense

φ(q) = ∆q

∫
M
H(p, q)φ(p)dV (p)−

∫
M

∆naiv
q H(p, q)φ(p) (10.4)

The equation (10.4) is called the transposition of equation (10.3) and what we have just
done is a rigourous proof of the following heuristic justification of (10.4): "Take the
derivative ∆q inside the integral, then use

∫
M δp(q)φ(p)dV (p) "=" φ(q)".

Proof. The intuition is clear:

• since one only modifies the fundamental solution at points q far from p, one only needs
to recompense by ∆naiv

q H(p, q)

• there may be trouble near p caused by the difference between the Euclidean Laplacian
and the metric Laplacian, however as explained by Remark 47, this difference is O(r) as
r → 0.

For a rigorous proof, one calculates
∫
M H(p, q)∆ψ(q)dV (q) by decomposing M to B(p, ε) and

M \B(p, ε) with 0 < ε < δ0 tending to 0 eventually, then∫
M\B(p,ε)

H(p, q)∆ψ(q)dV (q) =
∫
M\B(p,ε)

(
∆naiv
q H(p, q)ψ(q) + d(ψ ∧ ∗dH −H ∧ ∗dψ)

)
dV (q)

=
∫
M\B(p,ε)

∆naiv
q H(p, q)ψ(q)dV (q) +

∫
∂B(p,ε)

(ψ ∧ ∗dH −H ∧ ∗dψ)dV (q)

by Stokes’ theorem, where ∗ denotes the Hodge star. Therefore∫
M
H(p, q)∆ψ(q)dV (q) =

∫
M

∆naiv
q H(p, q)ψ(q)dV (q) + I1 + I2

where I1 = limε→0
∫
∂B(p,ε)(ψ ∧ ∗dH −H ∧ ∗dψ) and I2 = limε→0

∫
B(p,ε) H(p, q)∆ψ(q)dV (q).

Now I2 = ψ(p) since ( sin(bε)
bε

)n−1 ≤ dV/dE ≤ ( sin(αε)
αε

)n−1 in B(p, ε) by Volume comparison
theorem where b2 is an upper bound of sectional curvature and (n − 1)α2 is a lower bound
of Ricci curvature (α ∈ C), and since ∆ψ(q) − ∆Eψ(q) = O(ε) in B(p, ε) where ∆E is the
Euclidean Laplacian.

For I1, with ε small enough such that χ = 1, one has |H ∧ ∗dψ| ≤ const ε2−n(∗dψ). By
straightforward computation:

dH = −ω−1
n−1r

1−ndr, dV = rn−1
√
|gθ|dr ∧ dθ1 ∧ · · · ∧ dθn−1

∗dH = −ωn−1r
2n−2

√
|gθ|dθ1 ∧ · · · ∧ dθn−1
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hence
∫
∂B(p,ε)H ∧ ∗dψ = O(ε) and

∫
∂B(p,ε) ψ ∧ ∗dH = O(ε2n−2). Therefore I1 = 0 and the

conclusion follows.

10.2 Existence of Green’s function on compact Rieman-
nian manifolds

Our goal is to prove the following theorem

Theorem 122 (Existence of Green’s function). Let Mn be a compact Riemannian manifold
without boundary, there exists a Green’s function G(p, q) of the Laplacian such that

1. Green’s function. For all ϕ ∈ C2(M),

ϕ(p) = V −1
∫
M
ϕ(q)dV (q) +

∫
M
G(p, q)∆ϕ(q)dV (q) (10.5)

2. Smooth. G ∈ C∞((M ×M) \∆M).

3. Radial estimates. There exists a constant k such that

|G(p, q)| ≤

k(1 + | log r|), if n = 2
kr2−n, if n > 2

(10.6)

for r = d(p, q). Moreover, one has the derivative estimates:

|∇qG(p, q)| ≤ kr1−n,
∣∣∣∇2

qG(p, q)
∣∣∣ ≤ kr−n, (10.7)

4. G is bounded below. Since G is defined upto a constant, one can choose the constant so
that G > 0.

5. Constant integral. The integral
∫
M G(p, q)dV (p) is constant in q. Since G is defined upto

a constant, one can choose the constant so that
∫
M G(p, q)dV (p) = 0.

6. Symmetric. G(p, q) = G(q, p) for p 6= q in M .

For a better notation, let us replace ∆pU(p, q) by ∆2U(p, q). Recall that we already know
how to solve the equation ∆u = f for f ∈ L2(M), this means we can solve ∆2U(p, q) = fp(q)
for double-integrable functions fp, or briefly we can solve L2 functions. Now, define

(X ∗ Y )(p, q) :=
∫
M
X(p, r)Y (r, q)dV (r)

if the integration is possible and if it commutes with derivation, one has

∆2(F1 ∗H) = F1 ∗∆dist
2 H = F1 + F1 ∗∆naiv

2 H
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So if one can solve F1 ∗ ∆naivH, then one can solve F1, i.e. if ∆2E2 = F1 ∗ ∆naiv
2 H then take

E1 := F1 ∗H − E2, one has ∆2E1 = F1.
Now in order to prove that δ∆ − V −1 can be solved, it remains to check that

δ∆ ∗ (∆naiv
2 H)∗k ∈ L2(M) for k � 1. (10.8)

This is the content of the following lemma.

Lemma 123. Let Ω ⊂ Rn be a bounded open set, X, Y : (Ω × Ω) \∆Ω −→ R be continuous
functions such that

|X(p, q)| ≤ const d(p, q)α−n, |Y (p, q)| ≤ const d(p, q)β−n, α, β ∈ (0, n)

then
Z(p, q) :=

∫
Ω
X(p, r)Y (r, q)dV (r)

is continuous in (Ω× Ω) \∆Ω and

|Z(p, q)| ≤


const d(p, q)α+β−n, if α + β < n

const(1 + | log d(p, q)|), if α + β = n

const, if α + β > n

In the case α + β > n, Z admits a continuous extension to Ω × Ω. The result also holds for
compact Riemannian manifolds.

Proof. It suffices to consider p, q closed to each other. Let d(p, q) = 2ρ. Decompose Ω =
(Ω ∩B(p, ρ)) ∪ (ω \B(q, 3ρ)) ∪ Ω ∩ (B(q, 3ρ) \B(p, ρ)), then∣∣∣∣∣

∫
Ω∩B(p,ρ)

X(p, r)Y (r, q)dV (r)
∣∣∣∣∣ ≤ Cρα+β−n

∣∣∣∣∣
∫

Ω∩B(q,3ρ)\B(p,ρ)
X(p, r)Y (r, q)dV (r)

∣∣∣∣∣ ≤ Cρα+β−n

∣∣∣∣∣
∫

Ω\B(q,3ρ)
X(p, r)Y (r, q)dV (r)

∣∣∣∣∣ ≤ C
∫ D

ρ

dr

rn−α−β−1

where D is the diameter of Ω. For compact Riemannian manifold, take ρ� δ0, the injectivity
radius and use Comparison theorem, one has the same estimates.

Back to the proof of Theorem 122, one can see that it suffices to choose k > n
2 in (10.8).

The rigorous proof is given below.

Proof of Theorem ref:thm:existence-green. Carefully do the algebraic part of the above argu-
ment, one poses

G(p, q) = H(p, q) +
k−1∑
i=1

(−∆naiv
2 H)∗i ∗H + Fk(p, q)
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where Fk(p, q) satisfies
∆2Fk(p, q) = (−∆naiv

2 H)∗k − V −1

This is possible if one chooses k > n/2 since by repeated application of Lemma 123, (−∆naiv
2 H)∗k

is continuous. By regularity result of equation ∆u = f , the function q 7→ Fk(p, q) is in
C2(M \ {p}). Each function Fk(p, ·) is uniquely defined up to a constant, choose the constant
such that

∫
M G(p, q)dV (q) = 0, then the function p 7→

∫
M Fk(p, q)dV (q) is continuous. The

condition 1) of the Theorem can be verified without difficulty. Moreover, since ∆2G(p, q) = 0
if q 6= p, the function q 7→ G(p, q) is C∞.

We will prove such G(p, q) satisfies the statements 2-6, starting from a weaker form 2-) of
2), that is we will prove that p 7→ G(p, q) is continuous, then using this, we will prove 3-6, and
eventually come back to prove 2 completely.

For 2-) we will use the following fact:
Fact. If ∆u = f and f ∈ C0(M) (hence u ∈ C2(M) and

∫
M u = 0, then one has sup |u| ≤

C sup |f | where C > 0 is a constant.
Denote Γi := (−∆naiv

2 H)∗i and apply the result for u = F (p, ·) − V −1 ∫
M F (p, q)dV (q) and

f = Γk(p, ·), one has

sup
∣∣∣∣F (p, ·)− F (r, ·)− V −1

∫
M

(F (p, ·)− F (r, ·))
∣∣∣∣ ≤ C sup

q
|Γk(p, q)− Γk(r, q)|

Then the continuity of p 7→ F (p, ·) under C0 topology is given by

• p 7→
∫
M F (p, ·) is continuous by the previous choice of constant.

• The uniform continuity of Γk on M ×M , which is the result of its continuity and the
compactness of M ×M .

Hence p 7→ G(p, q) is continuous on M \ {q} for all q ∈M .
For 3), fix p ∈ M and let r = d(p, q) be small, then H(p, q) = O(r2−n, (Γi ∗ H)(p, q) =

O(r2i+2−n) by Lemma 123 and F (p, q) = O(1) if n > 2. Hence G(p, q) = O(r2−n), where here
the constant in O(r2−n), if checked carefully, does not depend on p. The case n = 2 can be
treated similarly. For the derivative estimates, note that ∇qG(p, q) = ∇qH(p, q) + ∑k−1

i=1 (Γi ∗
∇2H)(p, q) +∇qF (p, q) and ∇2

qG(p, q) = ∇2
qH(p, q) +∑k−1

i=1 (Γi ∗ ∇2
2H)(p, q) +∇2

qF (p, q) where
the commutative of derivation and integration can be justified by Lebesgue’s Dominated con-
vergence. In both case, the dominant terms as q → p are ∇qH(p, q) and ∇2

qH(p, q) respectively,
which is O(r1−n) and O(r−n) where the constants in big-O do not depend on p.

For 4), note that H(p, q) is the dominant term of G(p, q) as q → p and H(p, q) > 0, one see
that G(p, q) > 0 in a neighborhood of ∆M . By the compactness of M and the continuity of G
outside of ∆M , one sees that G is bounded below.

To prove 5), take to transposition of (10.5), i.e. multiply by ψ(p) and integrate, as in
Remark 48, one obtains

∆q

∫
M
G(p, q)ψ(p)dV (p) = ψ(q)− V −1

∫
M
ψ(p)dV (p) (10.9)
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Substitute ψ = 1, one sees that q 7→
∫
M G(p, q)dV (p) is harmonic on M , hence is constant by

compactness of M .
We will now prove 6). It follows from (10.5) that

∆q

∫
M
G(p, q)ψ(q)dV (q) = ∆qψ(q) (10.10)

Also, from the transposition (10.9), replace ψ by ∆ψ, one has

∆q

∫
M
G(p, q)∆ψ(p)dV (p) = ∆qψ(q)

Swap p and q and subtract to (10.10), one has

∆p

∫
M

(G(p, q)−G(q, p)) ∆ψ(q)dV (q) = 0

Hence
∫
M (G(p, q)−G(q, p)) ∆ψ(q) = C const. Integrate by p ∈ M and use the fact that we

chose
∫
M G(q, p)dV (p) = 0, one has C = 0, meaning that ∆q (G(p, q)−G(q, p)) = C(p), being

independent of q. By swapping p, q, one has C(p) = −C(q) for all p 6= q. Since M contains
more than 3 points, these constants are 0. Hence G(p, q) = G(q, p).

Now coming back to 2), since G(p, q) = G(q, p), we see that p 7→ G(p, q) is C∞ for all
q ∈ M . It remains to prove that p 7→ ∇h

qG(p, q) is continuous on M \ {q}, then Schwarz’s
lemma applies. For that, one may try the following argument:

∆p∇h
qG(p, q) = ∇h

q∆pG(p, q) = 0, p ∈M \ [q}

hence p 7→ ∇h
qG(p, q) is C∞. It is however difficult to justify the commutativity of derivations,

which is equivalent to∫
M
∇h
qG(p, q)∆ϕ(p)dV (p) = ∇h

q

∫
M
G(p, q)∆ϕ(p)dV (p), (10.11)

that is the ability to derive in the integral sign. A justification for this can be done in the case
h ≤ 2 using estimates of 3).

A simpler way is to note that it suffices to prove the continuity of p 7→ ∇h
qG(p, q) for p in a

small open set V with V̄ not containing q. Then claim that ∆p∇h
qG(p, q) = ∇q∆pG(p, q) = 0 as

distributions on V , which is equivalent to (10.11) for all test functions ϕ with suppϕ ∈ V . Then
Dominated convergence applies since |∇h+1

q G(p, q)| ≤ Cd(q, V̄ )1−n−h hence is bounded.
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