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Chapter 1

Summary

1.1 Summary

The goal of this part is to give a summary of what will be developed in the next chapters. In
brief, we are interested in maps f : M — M’ between Riemannian manifolds (that to simplify,
are supposed to be compact) that are critical points of the energy functional

B(f) = [ 195V

By taking first order variation of F, these are maps whose tension field 7(f) vanishes.

1.1.1 Deformation using nonlinear heat equation.

The approach of [ES64] is to prove that, if the target space is negatively curved, then any
smooth map fy : M — M’ can be deformed to a harmonic map using the gradient descent

% =7(ft)
Iy = fo
We will prove that if M’ is negatively curved then this PDE admits a globally defined smooth

solution f; and that fo, := lim;_, f; in C'™ is a harmonic map.
The resolution of (1.1)) can be organised in 3 steps:

equation:

(1.1)

1. Find the global equation. We will find a global frame of M’ and express f in this frame,
so that instead of solving for a map, we will have to solve for functions.

2. Study linear PDEs on manifolds. The equation, expressed in local coordinates, is a
nonlinear heat equation, i.e. other than a heat operator, it has a quadratic term. Short-
time existence and regularity for (1.1)) follows from standard results of parabolic equation.
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3. Prove long-time existence. In order to use continuity method, we will have to prove that
WkP_norms of the solution f; do not explode. This will be established first in the case
W22 using physical quantities, namely the potential energy E and the kinetic energy
K. The general case is proved from the W?2? estimate using Garding’s inequality and
Comparison theorem for parabolic equation.

The hypothesis of negative curvature is only used to establish the energy estimates. During
deformation, the rate of potential energy can be calculated as:

de(f)

dt = _A6<ft) - |B(ft)|2 - <R1C(M)vvft, Vuft) + <Riem(M,)(vvft7 wat)vvfta vwft>

and the kinetic energy as:

dk(f)
dt

Afi af

2

ot

— _AR(f) - ‘v

Therefore if all sectional curvatures of M’ are negative, these rates can be controlled and the
energies are guaranteed not to explode.

1.1.2 Existence using Morse-Palais-Smale theory.

We also give a less detailed review of the work by Sacks and Uhlenbeck [SU81]. This approach
uses an approximating family E, of the energy functional E whose critical functions in W2«
can be easily proved to exist using Morse-Palais-Smale theory. One then tries to prove that the
critical sequence C'-converges to a nontrivial limit.

As a concrete result, the authors proved, using an extension theorem for harmonic maps on
surface and a suitable covering of M by small discs on which the energy F is sufficiently small,
that if the fundamental group 7 (M’) is nontrivial for a certain k& > 2, or equivalently, if the

universal covering M’ of M’ is not contractible, then there exists a nontrivial harmonic map
from S? to M.

10/37
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Chapter 2

Harmonic maps of Riemannian
manifolds

2.1 Harmonic maps

2.1.1 Variational approach: energy integral and tension field

Notation. Let M, M’, M" be Riemannian manifolds of dimension n,n’ and n” respectively.
We will use indices ¢, j, k,...,a,3,7,...,a,b, ¢ to denote local coordinates of M, M’, M". Let
f:M— M f": M — M" be a smooth maps, one denotes

_afa o a?fa

oxt’ Y Oxioxi

fi ~ T

so that Vh = h;dz’ and V(Vh) = h;jda’ @ da? and —Ah = Tr V(Vh) = g h;; for any smooth

function h.

Definition 1. The energy desity of f at p € m is defined by

e(f)(p) = ;<g,f*g>p - ;gijf?ffg&ﬁ

and the energy functional of f is
1 g f .
B(f) = [ e(Dav =5 [ g7 217l detlg) b’ A+ A da

We recall that the inner product between 2 tensors of type (p,q) S = Sﬁ;’; T = Tl]jllf" is

] Gl 01...0p k1. Ky
Hm,n g’bmkmg nmS]qu l1...0q

Remark 1. The energy density is non-negative at every point. Hence E(f) =0 if and only if
e(f) =0 at all points if and only if f is constant.

1337
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Definition 2. Let o be a symmetric function of n variables and v be a symmetric (0,2) tensor
field, one can define the o-energy desity of o at P € M to be o(fy,...,[,)(P) where B; are
eigenvalues of the linear operator (9% ;)y.;. The o-energy of a is I,(a) := [y, o(a)dV

Take oo = f*¢', one calls o(«) the o-energy density of f and I,(«) the o-energy of f.

Example 1. For example, the energy functional E(f) is In (f)- V(f) =1 1,2(f) is called the
volume of f.

Lemma 1 (variation of the energy). Let f; : M — M’ be a smooth family of smooth maps
between Riemannian manifolds for t € (ty,t1). Then

d
E(ft) = _/M( Aft +g”F ftlft]) '/yl/aaftt dv Vit € (toatl)

Proof. One has

) I oy dt
cN AP 500G dfY
g g JE 4 g paff
/[ ; )j i I T oy di dV(g)

1 2ft B glﬁ dft
- ij ra ! 1] « «
/ [ e WAR A av(g)

The first term is

g afe o dfP 0g;
_21394/ :_21]04 22](1 af pv
( g f7, ga,@’)] g 1] dt gocﬁ 1 dt 8y f
df! 3095, dfy
= IA e z] « av
P9 ar a2 dyP dt
It remains to check that y B4
Yav 9ap Iy
—2—=2r = -2I
ayﬁ + oy apY w
when we are allowed to permute «, 5, which is routine. O

Definition 3. 1. A wvector field along [ : M — M’ is a smooth application v : M —
TM' such that mov = f where m : TM' — M’ is the canonical projection. In other
words, it is the association of each point P € M a tangent vector at f(P)

2. The tension field of f is the vector field along f defined by

T(f) = =AY+ g T o f7

By the Lemma 7(f) is the unique vector field along f such that %E(ft) = — [y (r(f), %).
In particular, if fi is the variation of f along a vector field v along f, i.e. f(P) =

expyp)(tv(P)) then ZE(fi) = —(7(f),v).

1437
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2.1. HARMONIC MAPS

3. f: M — M’ is called harmonic if 7(f) = 0, or equivalently if f is a critical point of
E.

In normal coordinates of M at P and M’ at f(P), the tension field of f is given by
o
(HP)=> ———(P
FUNP) =X 5 P)
Remark 2. 1. If M’ is flat, i.e. Rl 5.5 =0 then 7(f)Y = —Af" is linear in f. We refind

By
the definition of harmonic function.

2. Since 7(f) depends locally on f, isometries and covering maps are harmonic.

Proposition 2 (Holomorphicity implies harmonicity). Holomorphic maps between Kahler man-
ifolds are harmonic.

Proof. We recall that exponential function expp : TpM — M’ on a Kahler manifold M is
holomorphic for any P € M. In fact, let v € TpM and dv € T,(TpM) be a tangent vector at v
and denote abusively by J the complex structure of the complex vector space TpM and that
of M, one needs to see that

Dexpp(v).Jov = J(expp(v))D expp(v).dv (2.1)

In fact, let Y1, Y2 be Jacobi fields along U(t) = expp(tv) the geodesics of M starting at P in
direction v with ¥;(0) = Y3(0) = 0, Y1(0) = dv, Y3(0) = Jév then the LHS of is ¥5(1), and
the RHS is J(U(1))Y1(1). Then one can see that Y5(t) — J(U(t))Y1(t) = 0 for every ¢ € [0, 1]
since it is true at ¢ = 0 and the derivative with respect to ¢ vanishes as V;J = 0.

Therefore, at a point P of a Kahler manifold M, there exist holomorphic coordinates z/ =
27 + iy of M in a neighborhood of P such that {z;,y; : j = 1,n/2} are normal coordinates
centered in P. Using such coordinates for P € M and f(P) € M’, one has AfY = 0 since f7 is
holomorphic and I'J5(P) = 0 by normality, it follows that 7(f) = 0 at every point P € M. [

2.1.2 Formulation using connection on vector bundle

Setup and notation. Let E be a metric vector bundle over a Riemannian manifold M, i.e.
each fiber of F is equiped with an inner product that we denote by (g,5). The metric of M is
denoted by (g;;). Let n and m be the dimension of M of the fiber.

Covariant derivatives and exterior derivatives. We recall that a covariant derivative
or a connection V of F is uniquely determined in local coordinates by an m x m matrix A
of 1-forms, in other words, it is an 1-form on M with value in Hom,(F, E') which depends on
the local frame of E (i.e. A is not a tensor with value in F). A is called the connection form
of V. Locally

@X(saéa) = (VxsY)eé, + Ag(X)sﬂéa.
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When one prefers to work with forms rather than tensors with value in E, one uses an
exterior derivative, a map D : AP(M, E) — AP*(M, E) which turns an p-form with value
in £ to an p 4+ 1-form with value in E. Locally

D(s%€y) = (ds")én + AF A s7¢,.

and
D?*(5%€,) = (dA+ AN A) A s.

One notes © := dA+ AN A, which is an m x m matrix of 2-forms of M. Unlike A, ©, seen as an
2-form with value in Homy,(E, E) does not depend on the local frame of E, i.e. © transforms
as a (0,2) tensor with value in E, called the curvature form.

The fibrewise metric structure of E and the metric tensor of M give rise to a pointwise inner
product of (p, q) tensors of M with value in F, in particular a pointwise inner product (s, s’) —
s- s from AP(M,E) x AP(M, E) to C*°(M). Integrated over M, the pointwise inner product
gives rise to a global inner product [y,(,) of A?(M, E). One denotes by § : AP (M, E) —
AP(M, E) the adjoint operator of D : AP(M,E) — APTY(M, E) with respect to this inner
product, i.e. [y, (Ds,s") avr1(a,5) = [31(5,08") ar(ar,p) for all s € AP(M, E), s € AP*1 (M, E).

Laplacian operator and harmonic forms. The Hodge Laplacian is defined as a endo-
morphism of AP(M, E) given by

A =D6+4D
and a form s € AP(M, F) is called harmonic if As = 0. Since the Laplacian operator represents
the Dirichlet integral, i.e.

Ds, Ds') + / ds,08") = / As, s,

| (D5, D)+ [ (55,05) = [ (As.s)

one has As = 0 if and only if Ds = §s = 0.

Riemannian connected bundle. The metric vector bundle E over M is called a Riemannian-
connected bundle if it is equipped with a connection V under which the metric ¢’ of E is
parallel, i.e. V¢ = 0, in other words, the matrix A in an orthonormal frame is anti-symmetric:

A+ 'A = 0. Unless explicitly indicated, we always suppose that our metric vector bundle F is
Riemannian-connected and the metric ¢’ is parallel to the connection being used.

Example 2. The case of our interest is when we have a smooth map f : M — M’ and
E = f*TM' is a metric vector bundle over M under the metric ¢ induced from M'. Taking
the connection V to be the Levi-Civita connection V' on M’, meaning

for any vector field s along f, one can see that E is a Riemannian-connected bundle over M.

16,37
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2.1. HARMONIC MAPS

Lemma 3. Let E be a Riemannian-connected bundle and s = s¢dz'é, € A'Y(M, E), one has
1. 0s = (0s)*é, € AY(M, E) where

(6s)* = —g" (Visjo-‘ + Agisf) ,

2. As = (As);dz" where (As); is an m X m matriz given by
(As); = —VF*Vysi + ' (@Zh — Ric?) Sh
where:

e the indices i, h, k correspond to local coordinates of M,

o O is the curvature form of V with its indices raised by the metric g of M,

h

e Ric! = Ricl'l,, is the Ricci curvature tensor of (M, g) with indices raised by the

metric g, multiplied by the identity m x m matriz,

. VF =gV,

3. With s-s' denoting the pointwise inner product of AY(M, E) and (-,-)g denoting the metric
g of E, one has

1 _ = =i k tah . h i
- iA(s cs)=5-As—(V;s;,V's") g — < (@i - RlCi)Sh,S >E (2.2)
where the superscript i, h are raised by the metric g.

Proof. Computational in nature. O

Remark 3. 1. We note by Q(s) the last term of (2.2)), then Q is a (2,0) tensor on M with
value in E* ® E* where E* is the dualised bundle of E. In practice, () is an mn X mn
matriz with coefficients

ng = gk gii {(giw@%)kj — g;ﬂRickj}

2. Since [y, A(s-s)dV =0, if s is harmonic, one has

/ Q(s)dV = —/ (Visg, Vis®) gdV
M M

| (2.3)
_ /M IVispda’ @ da* @ éa)%2(ay.5dV <0

1737
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2.1.3 The case of £ = f*T'M’

Energy functional and tension field

Our interest will be the case of Example |2l where £ = f*T'M’ for a smooth map f: M — M’
of Riemannian manifolds is a Riemannian-connected bundle over M with the connection V
given by the Levi-Civita connection of M’.

In this section, the tangent map Tf : TM — TM' can be interpreted as a form f, in
AY(M, E). The energy functional can be rewritten as

B = 3 [ gV = L F s

Proposition 4. Let f: M — M’ and E = f*T' M’ be the Riemannian-connected bundle over
M. Then:

1. AP = F’fafgd:vi where T"? are Christoffel symbols of (M, g').

/y?a

2. Df, =0 where f, is considered as an element of A'(M, E). Hence Af, = Dif,.
3. The tension field of f is T7(f) = =0 fs.

Proof. 1. We will use the fact that V¢’ = 0. Given two section s = s%¢,,t = tPés of E,
expanding V(s -t) = (V;s) -t + s - V,t, one has

dg.
B-daB B8 v L,
Sat W = Sat (Aazg'yﬂ + A,B’Lga’y)

'Y
at

Taking s, to be of small support, a = 8 and substituing A,; = I, ' one obtains the

first statement.

2. By direct computation:

a2fa o 5 ) : ~

since it is the product of a symmetric quantity in (¢, 7) and an anti-symmetric one.

3. Using the first part of Lemmafor s = f. = [Pdx'®¢é,, one has d f, = —g¥ (vivjfv + F%ff‘ff) €y

—7(f)
O

It follows immediately that

Corollary 4.1. f : M — M’ is a harmonic map of compact Riemannian manifolds if and
only if f. is harmonic as form in AY(M, f*TM’).

1837
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2.1. HARMONIC MAPS

Fundamental form, some results in case of signed curvature

Definition 4. The fundamental form of a map f: M — M’ of Riemannian manifolds is
the (0,2) symmetric tensor on M with value in E = f*T'M’ defined by

Bf) =Vi= (F+TLff]) do’ @ da? @ &,
The function f is called totally geodesic if 5(f) =0 identically on M.
Remark 4. 1. The tension field 7(f) = g B(f):; is the trace of the fundamental form.

2. If f is totally geodesic then it is harmonic.

When s = f., Lemma [3]and Remark [3] become Lemma [5 with no more than direct compu-
tation. The appearance of Riemann curvature tensor R’ of (M’,¢’) is due to the formula

R?y = 0,07, — 0,1, + T 5T, — T 5T,
Lemma 5. 1. Q(f.) is given by
QUf) = Rupyo £ 1] FL g™ 9" = Ric” £ £ gl
and
Q(f*)ijﬁ = Rlaﬁy&flzflagikgﬂ - Ricijgéyﬁ-
2. If f is harmonic then

—Ae(f) = BN = Ropos £ 1] 1 9™ 9" + Ric” 7 £ gl

where |B(f)| is the pointwise norm of B(f).

The previous computation of Q(f.) in term of Riemannian curvature of M’ and Ricci cur-
vature of M give the following result in case the curvature of M and M’ are of definite sign.

Notation. Given a Riemannian manifold M, we will use the following notation:

1. Ric > 0 (resp. Ric > 0) if the Ricci curvature is positive semi-definite (resp. positive
definite) as symmetric bilinear form.

2. Riem < 0 (resp. Riem < 0) if all sectional curvatures are negative (resp. strictly nega-
tive), i.e. Ryjppu'viuvf <0 (resp. Rijnpu‘viuv® < 0) for non-colinear vectors u, v.

Corollary 5.1. Let f: M — M’ be a map of Riemannian manifolds.
1. If f is harmonic and Q(f.) < 0 then f is totally geodesic and e(f) is constant.

2. If Ric(M) > 0 and Riem(M') < 0 then f is harmonic if and only if f is totally geodesic.

19/[37
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Proof. All the statements are consequence of 2) of Lemma [5|and the fact that [,, Ae(f)dV =0,
noticing that

e Ric” fo fg.s is Ric ® ¢ applied doubly to ff'da’ @ éq.

. R&m(;fffff,;’ffgikgﬂ is (f*R")ijnkg™¢’". In a normal coordinate at P where g% = 1, ¢! =
dj1, it is the sum of sectional curvatures of tangent planes formed by f.e;, fie;, and
therefore negative.

]

2.1.4 Example: Riemannian immersion

Let f: M — M’ be a Riemannian immersion, i.e. T'f is injective and f*¢' = g. We will
see that the fundamental form B(f) that we defined earlier is the same as usual definition in
courses of Riemannian geometry.

Second fundamental form.

One defines the symmetric (0,2)-tensor II of f*T'M’ as the unique normal vector of M such
that

<Hij7 £cr> = _<@i£0> f*€j>
for every vector field &, of M’ orthogonal to M.

Lemma 6 (Second fundamental form). If f is a Riemannian immersion then B(f);; = —1L;
and they are orthogonal to M. In particular, if f is totally geodesic than it maps geodesics of
M to geodesics of M’

Proof. One has

<6i€m f*ej> =

£, Vilfee))) = (&0, Vi(f]dz' @ &,)e; + f.Vie;)
Eoy (frda'e, + [7da'V,E,)e;)

= (&0 fh8y + £1A%80) = (&, (FL+ T f010) &)

&, Vilfe)-€5) = (&os B(f)ig)

where we used & L f.e; in the first line and & L f.([e;,e;]) in the second line. Hence

II;; = —p(f)i;; modulo an element in T'M. It remains to see that 5(f);; L M in order to
conclude IT = —3(f). By definition, one has 3(f);; = Vi(f.).e; and

<5(f)ij7f*€k> = <@i(f*)-€j, f*€k> = @i<f*€ja f*€k> - <vieja€k> - <f*€ja @i(f*ek»

= Vilej, ex) — (Viej, ex) — (B(f )i, fxej) — (€5, Vie)
= —(B(f)ir, f+€5)

(2.4)

o~ o~ o~ ——
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2.1. HARMONIC MAPS

Then using the symmetric of 3(f);;, one has (8(f);, fxex) = 0.
Finally, if 3(f) = 0 and X is a geodesic vector field of M, one needs to prove that f.X is a
geodesic vector field of M’'. In fact

Vx(foX) = (Vx )X + LVxX = B(f)(X,X) = 0.
Hence f,X is a geodesic field of M’. n

Example 3. The inclusion v — (x,y0) of a Riemannian manifold M to the Riemannian
product M X N is totally geodesic.

Definition 5. Given an orthonormal frame (&5)1<o<n—n, the mean normal curvature field
of M in M" at P € M is defined as

n'—n n'—n

E<P) = Z gij<Hij7€a>fa == Z <T(f)a£a>£a-

o=1 o=1

The immersion f is said to be minimal if & vanishes identically on M.

Remark 5. 1. Since (& )1<o<n/—n s an orthonormal frame, one also has
E(P) = —g"(Viks, ;)60 (P) = = >~ div (&(P)) &(P)
o=1

2. The mean normal curvature field is the tension field of f, i.e. & = —7(f). Minimal
immersions are exactly harmonic immersion.

The case of signed curvature.

If f: M — M’ is a Riemannian immersion then the Ricci term of Lemma 5| is actually the
scalar curvature of M, one has

Proposition 7. Let f : M — M’ be a Riemannian immersion. Suppose that Riem(M') <0
and r = g“Ric;; < 0 at one point of M. If [ is harmonic then it is constant.

2.1.5 Composition of maps

The following results come from direct computation of the second fundamental form and tension
field of composition of maps between Riemannian manifolds. Again, we use indices 4, j, k, ...
for M, o, 8,7, ... for M’ and a,b,c,... for M".

Proposition 8. Let f : M — M’ and f' : M’ — M" be smooth maps of Riemannian
manifolds, then

B(f"o F)e = BULLE+ BUNL LS (2.5)
and

T(f o /) =T(f)F+ g B st f) (2.6)
Therefore,
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If f is and f is then "o f is
totally geodesic totally geodesic totally geodesic

totally geodesic  harmonic harmonic

and the inverse of a totally geodesic map is totally geodesic.

Remark 6. It is not true in general that the composition of harmonic maps are harmonic. For
exzample, if one composes the harmonic maps R — R? : x + (z,2x) and R? — R : (z,y) —
2% — 12, the result is R — R : x — —3a2, which is not harmonic.

Proposition 9 (composition with immersion). If f': M — M" is a Riemannian immersion
and f: M — M’ then

1. Energy functionals: E(f) = E(f' o f).
2. Tension fields: T(f) is the projection of T(f' o f) to M'.
Proof. 1. One has e(f) = 3(g. f*¢") = 3(g. (f' 0 f)*g") = e(f" o [).
2. One has 7(f" o f)* = 7(f)* + gijﬁ(f’)gﬁff‘ff by (2.6). The conclusion follows since the

second term is normal to M’.
O

The following immediate corollary of Proposition [9 is a generalization of the fact that a
curve is geodesic if and only if it is perpendicular to its tension field.

Corollary 9.1. If f' : M' — M" is a Riemannian immersion, then a map f : M — M’ is
harmonic if and only if T(f' o f) L M.

2.2 Nonlinear heat flow: Global equation and existence

of harmonic maps.

2.2.1 Statement of the main results.

We want to prove in the next part existence of harmonic map between manifolds M and M’
by deforming any map f : M — M’ using the 7-flow, meaning solving the PDE:

{‘ngT(ft), tela,u]
fa = fa

The equation makes sense because both % and 7(f;) are vector fields along f;. Since this is
the gradient-descent equation for E, the energy of f; decreases and we hope, under conditions,
to obtain convergence of {f;} to a critical point f,, of E, this will prove that any homotopy
class of C*°(M, M') has at least a harmonic map.

It is proved by Eells and Sampson [ES64] that

(2.7)

22,37



ECOL
POLY

UNIVERS

2.2. NONLINEAR HEAT FLOW: GLOBAL EQUATION AND EXISTENCE OF HARMONIC MAPS. /

Theorem 10 (Eells-Sampson). Let M and M’ be compact Riemannian manifolds with Riem(M') <
0 then there exists a harmonic map f : M — M’ in each homotopy class.

Several boundary conditions, of Dirichlet, Neumann or mixed type, are also taken into
account by Hamilton [Ham75|, as an example, we will state the Dirichlet problem:

Theorem 11 (Hamilton). Let M and M’ be compact Riemannian manifolds possibly with
boundary. Suppose that M' has Riem(M') < 0 and OM' is convex, then any relative homotopy
class of C*°(M, M') has a harmonic element.

About the terminology, relative homotopy class means that we only deform f among
maps with the same value on M. The convexity of OM’ means that the geodesic at any
point in M’ with initial tangent vector parallel to the boundary does not enter the interior
of M’ in short time. This condition can be expressed using the Christoffel symbols of M’ at
the point in question: If M’ is coordinated by y',...,y" with and M’ = {y™ > 0}, then the
convexity is translated as Q}B > 0 as a symmetric form (1 < a, f < n—1). This can be seen by
the geometric intepretation of the second fundamental form of the embedding s : OM' — M’,
which is II(s) = —I"]s.

It is easy to see that the convexity of OM’ is a necessary condition, as harmonic maps from
R are geodesics: Suppose the condition does not hold at x € dM’, meaning that upto time ¢
the geodesic flow of M’ initially tangent to M’ remains in the interior. The geodesic of oM’
of length less than ¢ with the same initial tangent therefore cannot be deformed into a geodesic
of M’ in relative homotopy class.

2.2.2 Strategy of the proof.

In order to have a global frame, we will embed M’ into an Euclidean space V', but we will not
use the Euclidean metric of V. In fact, let T" be a tubular neighborhood of M’ in V' then if T
is trivial, i.e. if it is diffeomorphic to M’ x D where D is a sufficiently small ball of dimension
being the codimension of M’ in V', and we will equip T" with the product metric of M’ x D.

If T is not trivial, using a partition of unity of M’, one can construct a metric on 7" as linear
combination of the product metrics on trivialised pieces so that the involution ¢ : T — T
locally given by (y,d) — (y,—d) for y € M’,d € D is an isometry. As a consequence, M’ is
totally geodesic in T

Since M’ = M’ x {0} is totally geodesic in T', one has for every smooth function f : M —
M’

TT(f) = TM’(f)

The crucial property we expect for a global equation of , is the following: if the solution
initially is in M’ C V then it remains in M’ for all relevant time ¢t > a. Eells-Sampson [ES64]
did this by using at the same time 2 different metrics on 7', namely the product metric as
tubular neighborhood and the Euclidean metric. I choose to present here the formulation of
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Hamilton, which is conceptually simpler with the only drawback being that we need to establish
the uniqueness of solution of first.

After having the global equation, we will prove the short time existence of solution by
linearising the equation and using Inverse function theorem. The global formulation and the
proof of short-time existence are independent of the negative curvature hypothesis, which will
only be used later to establish energy estimates and assure the convergence of long-time solution
and the vanishing of its tension field.

2.2.3 Global equation and Uniqueness of nonlinear heat equation.
Theorem 12 (Global equation). If the smooth function Fy,: M X [a, B] — V satisfies

dF,

7 Tr(F}) (2.8)

and F,(M x {a}) C M’ then F;(M X [o,w]) C M’

Proof. Let ¢ be the isometry of T locally given by (y,d) — (y,—d) for (y,d) € M' x D =T
and pose Gy = F; then G; and F} coincide initially since M’ is fixed by ¢. Moreover

dG dF,

d—tt = db.d—tt = du(rr(F})) = mr(eFy) = 70(Gy)
We conclude that F; = G; = (F}, hence F; remains in M’ for all relevant ¢, using the following
uniqueness of nonlinear heat equation. O

Theorem 13 (Uniqueness of solution of nonlinear hear equation) Let fl, fo: Mx[a,w] — M’
be C? functions satisfying the non-linear heat equation % S=Tm(fi),

df’L i a

& = AL+ g TR
where FZB are Christoffel symbols of M'. Suppose that fi and fy coincide on M x {a}. Then
fi=fa on M X [a,w].

Proof. 1t is sufficient to prove the theorem for w very close to a, therefore by compactness of M,
we can suppose that there exists a finite atlas M = UJ; U; with f1(U; x [a,w]) and fo(U;, [or, w])
being in the same chart V; of M’. We consider the distance function o(a,b) = %dM/(a, b)? for
a,b € M’ to measure the difference between f; and fs by

p(I,t) = g(fl(m,t),fg(ff,t))

The strategy is to prove that there exists C' > 0 such that 2 < —Ap+ Cp, then by Maximum
principle, one has p = 0.
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Fix a chart U; of M and the corresponding V; of M’ one has by straightforward calculation:

offof

. O%c do 5 0?0
—g" ( ol (f2)> foi f2] — 29" flz f2] (2.9)
ofio0f O ! offof
where ¢¥ is the metric on M and I” gv are Christoffel symbols of M’.
Let ¢ be a point in the chart V; and choose the normal coordinates of M’ at ¢. Then for
a,b € M’ near ¢, one has, since o(a,b) = o(b,a) and o(a,b) = 0 if b7 = ka" (the Euclidean
straight line from a to ka viewed on M’ is a geodesic):

2
Ccil/; — _Ap— g ( 0°c aafa (f1)> fhﬁflj7

1 1
o(a,b) = 5dM,(a, b)? = 5dE(a, b)? + \gys5(a’a?t® + 0°07a’)

where dg is the Euclidean distance, with Ag,s = A\yg5 and Agy 5 + A58 + Ags, = 0. We then
have the series development of ¢ at (0,0):

1
o(a,b) = 5557@5 —07) (@ — ) + Agy5(a’a’t® + 0°b7a’) + O(lal + |b])* (2.10)

and the development of its derivatives

0o
Seiap (@) = =08y + Agsqa’ + Ays b’ + O(lal + (b))’
62
m(aa b) = gy + Agy,sb’ + O(lal + |b])?
82
SorT(0,6) = 83 + Agyga® + Ol + b1
do

5ga (@0 = Ollal + [b),  I"5,(a) = O(|al)

So choose ¢ to be the midpoint of fi(x,t) and fo(z,t) and (fi(z,t), fo(x,t)) = (w, —w) in the
chart, one has:

d
L= —8p— (35, = Asyou” + Ow?) A7 197 = (35, + Aprs” + O(wf) £27 f2]9"
(2.11)
-2 (—(5/3’y + )\/Bgﬁwé — )\75,52125 + O(|w|2)) f Vg4 (2 12)
= —Ap —[df; - df2|2 - wa)\ﬁw,églj (f?ff?j - fliﬂflj) (2.13)

where we made a reduction of the term (2.12)), using the symmetric role of § and « to cancel
the first order term w’. This symmetry is not apparent in the term (2.12)) itself, but can be
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seen through their symmetry in the 2 terms of (2.11) and their symmetry in the sum of all
three, i.e. in the RHS of (2.9). The last term of (2.13)) can be bounded as follows:

W A5 (£ 2] = AL 1)) 67) = [whays (foF (F2] = 1)) + H] (Y = AD)) 67
< 20w Agyslldfs — dfa| (Jdfs] + |dfa])
< |dfy — dfal* + O(jw]?)

where for the last inequality, we use 2uv < u? 4+ v? and the fact that |df;| and |dfz| are bounded
on M. The estimate (2.13) can be continued:

d
< —Dp+Cla )l < —Ap+Cp

where C' > 0 is a constant chosen to dominate all C(z,t) for x € M in all charts and t €
[a, w]. O

Remark 7. The original proof of [Ham'75] made the reduction of the first order of w in (2.12))
using the following development of o:

o= ;5ﬁ7(aﬁ — %) (@ = 7) + Agys(a” = 67)(a" = 67)(a® + %) + O(Jal + |b])*

which was justified by o(a,b) = o(b,a) and o(a,a) = 0. It can be proved that this is equivalent
to (2.10) and the symmetries Agy5 = Apgs, Agy.s + Asg 4+ Agsy = 0.

As a side note, if a, b, c are on S* with d(a,c) = d(b,c) = x < 1 and the lines from a and b to
c are orthogonal at c, then the geodesic distance d(a,b) = arccos(cos?(z)) = z 2—%:53—{—0(334).
So o(a,b) = 3d(a,b)? has no third-order term.

2.3 A few energy estimates.

2.3.1 Estimate of density energies

We finish this part with a few straightforward computation concerning the potential energy
e(f;) = 3|V £i|?* and the kinetic energy k(f;) = 3|%t? of a nonlinear heat flow f; satisfying

2 dt
(2.7).
Theorem 14 (Density of Potential energy). If f; satisfies (2.7)) then

de(ft)
dt

where e( f;) is the potential energy density and B(f;) is the fundamental form and in the curva-

= _A€<ft) - ’B(ft)’Q - <RiC(M)vvft> vvft) + <Riem(M/)(vvfta wat)vvfta wat>

ture terms, the vectors v and w are contracted.
In particular, if Riem(M') < 0 and Ric(M) > —C' then

de 9

= < —Ae+ Ce—|B(f)] (2.14)
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2.3. A FEW ENERGY ESTIMATES.

Proof. Apply Lemma (3| to s = df; and the Riemannian-connected bundle F*T M’ over M x

[a, w] where F(-,t) = f;, the curvature terms cancel out and it remains to see that % =

—(df,, Adf,), meaning that Vg, df, = —Adf,. This can be easily justified:
@atdft = @at@MF = ?MﬁatF = @M T(ft) = _D(S(dft) = —Adf;

where the last "=" is due to Ddf; = 0. Note that D and ¢ are the exterior derivative and its
adjoint of the bundle (f;)*T'"M’ on M, where ¢ can be fixed after the third "=" sign. ]

Theorem 15 (Density of Kinetic energy). If f; satisfies (2.7) then

dk(f;) of.|”
o —awty - |v

ot

+<Rie (M")(V, ft,aft)v It f>

where k(f;) is the kinetic energy density and in the curvature terms, the vectors v is contracted,
In particular, if Riem(M') < 0 then

dk of. I
—Ak — ‘ e (2.15)

dt —

Proof. Let F': I x M — M’ be the total function with F(t,-) = f; for t € I = [o,w] and
E = F*T' M’ is a Riemannian-connected bundle on I x M with curvature form ©, then

Vo Vo(dF.v) = V.V (dF.v) + 6(0t,v)dF.v (2.16)

where dF' is the exterior derivative of f; on M. Note that @v@at(dF.v) = @U(@atdF).v =
V, (VM aft) v since VM %ft VEMIF = @étdF because V is torsionless on M’. Plugging this
in (2.16]) and taking contraction in v, one has

Aot

Vo 7(f)) = a— + Tr (v — O(dt,v)dF.v) (2.17)

But @B = R F! F Vdr' ® dx? where R’ denotes the Riemannian curvature of M’ and the

avy
indices ¢, 7 can be 0, Wlth 2% = t. Hence

Ofi Oft OfF
— 6 t YJt t
O(dt,v)dFv = Rl —L TR

= Rlem(M) (V ft; f ) \% ft

Plugging in (2.17) and taking inner product with %, one has

ot
o = (Ta G ) =~ (A5 5 ) + (memOuyws Ghes )
N ofio . Of
A (2’& )“Vat —|—<Rle M) By, g, >
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2.3.2 Estimate of total energies

We will now work with the total energies, in particular the total potential energy E(f;) :=
[y e(fr) and total kinetic energy K (f;) := [,, k(f:). Since tension field is the gradient of E,
one has:

Theorem 16. If f; : M — M’ satisfies (2.7 then

U [ (ot 5 == [ o = 2mt <o

Integrating Theorem [I5] on M then using Theorem [I6] one obtains:
Theorem 17. If f; satisfies (2.7) and Riem(M') < 0 then LK(f,) <0 and one has
1. The total potential energy E(f;) is > 0, decreasing and convex.

2. The total kinetic energy K(f;) is > 0, decreasing and if w = +oo then lim;_,, K(f;) = 0.

2
%‘ are bounded above by a constant C' > 0 independent

In particular, [y IV f|? and Jrvrscgny
of the time T € [, w].

Note that we ruled out the case K(f;) decreases to a strictly positive limit because E(f;) is
bounded below and £E(f,) = —2K(f;).
Integrating Theorem [I4] on M then using Theorem [I7] one has:

Theorem 18. If f; satisfies (2.7) and Riem(M') <0 and Ric(M) is bounded below then

J <

for all time t where the constant C' only depends on the curvature of M, M’ and the initial total
potential and kinetic energy, in particular, C' does not depend on t.

This means that || f;||w22(a) is bounded by a constant C' only depending on the curvatures
and initial total energies.

Corollary 18.1 (Boundedness in W?%?(M)). If F, satisfies (2.8) and Riem(M') < 0 and
Ric(M) is bounded below then

|E sy = [ 1B+ IVE| +|FP < C

for all time t where the constant C only depends on the curvature of M, M’ and the initial total
potential and kinetic energy, in particular, C' does not depend on t.

Note that the term |F|? is trivially bounded since the image of F remains in an Euclidean
ball B.
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Chapter 3

Short-time existence and regularity for
nonlinear heat equation

We will establish in this part a regularity estimate for the quadratic term of nonlinear heat
operator use it to setup a bootstrap scheme that eventually will prove that any sufficiently
regular solution of nonlinear heat equation that is initially C'*° will be always C*.

We will also prove short-time existence using well-known method of Inverse function theorem
for Banach spaces. Since the solution is smooth, we can apply Theorem [12| to conclude that
the it remains in M’ C RY.

3.1 Review of Sobolev spaces and Linear equations.

The following results are well-known and their statements are written here in the case of our
interest (linear heat equation on manifold). A more careful formulation with complete proofs
can be found in the appendices.

3.1.1 Sobolev spaces.

Let M be a Riemannian manifold, the Sobolev spaces W*P(M) on M can be defined as the
completion of C*°(M) with respect to the Sobolev norms

lellwes = D> 1D s

la| <k

We will suppose that M is a compact manifold, then set-theoretically W*? does not depend
on the metric of M and their norm remains in the same equivalent class as the metric varies.
The Sobolev spaces form a family of reflexive Banach spaces that is stable under holomorphic
interpolation:

31037



ECOLE
POLYTECHNIQUE 3. SHORT-TIME EXISTENCE AND REGULARITY FOR NONLINEAR HEAT EQUATION

UNIVERSITE PARIS-SACLAY

Theorem 19 (Interpolation of Sobolev spaces). Let p,q € (1,+00) and k,l € R and M be a
compact Riemannian manifold. Then the holomorphic interpolations of

Ag = WHEP(M) and Ay := WH(M)
are Ag = W*"(M) where

1 1
Ol+(1—0k=s 0-+(1—0)-=-.

In particular, one has the Interpolation inequality

1 lwer < 201F e | f 15

Sobolev embeddings and Kondrachov theorem remain correct on manifold.
Theorem 20 (Sobolev embeddings). Given k,l € Z, k> 1> 0 andp,q € R, p>q>1. Then

1LIf = — =L then

1
q
WHEI(M) — W' (M),
2. If % > % then
WHEI(M) < C"(M)
If ’H"T"" < % then
WHEA(M) — C™*(M)

where C" (M) denotes the space of C™ functions equipped with the norm |Ju||cr = max;<, sup |Viul,

and C™* is the subspace of C" of functz’ons whose r™-derivative is a-Holder, equipped with the

norm ||ul|cre = ||ul|or +SHPP¢Q{H P—g)(g)}

Theorem 21 (Kondrachov). Let k € Z>q and p,q € Ry be such that 1 > % > % — % > 0 then
1. The embedding W*4(M) < LP(M) is compact,
2. The embedding WH4(M) — C*(M) is compact if k — a > o where 0 < a <1,

It is also natural, for regularity results of parabolic equation, to use weighted Sobolev spaces
because each derivative in time should be counted as twice as that in space. For example, the
space W2P(M x [a,w]) is the completion of C°°(M) with respect to the norm

82
8x’8xﬂ

i
ox'||,,

d
lollves = el + | %)

Similarly, one can define W2*(M x [a,w]) using LP-norm of derivatives 087 of ¢ with
20+~ < 2k.
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3.1. REVIEW OF SOBOLEV SPACES AND LINEAR EQUATIONS.

We also want to be able to talk about W*? when k is not an integer and not necessarily
positive. This allows us to have a more flexible bootstrap scheme for nonlinear heat equation
and to use Interpolation Theorem [19| more efficiently. We claim that these generalised Sobolev
spaces (with weight and with non-integral regularity) can be defined on manifold and satisfy all
the above properties (reflexivity, Interpolation theorem, Sobolev embedding and Kondrachov
theorem) and refer to the appendices for all the details.

3.1.2 Trace theorem.

It is possible to avoid a discussion on Trace operator if we only want to make sense of the initial
condition of nonlinear heat equation: one can consider only solutions with regularity greater
than W2P(M x [o,w]) with p > dim M + 2, which can be embedded in C'(M). Tt is however
necessary to investigate regularity of Trace operator to have a complete proof of the bootstrap.
We will review briefly some results.

The following two behaviors of trace are well-known:

1. If =1+ % <k< % then the natural map W*P(M x [a,w]/a) — WEP(M X [a,w]) is an
isomorphism, where W*?P(M x [a, w]/a) denotes the completion under W*P-norm of the
space of smooth functions vanishing on a neighborhood of M x {«a}. There is therefore
no meaningful notion of trace in this case.

2. If k> % + 1, 1 > 0, then the restriction map
B: C®(M x [a,w]) — C®(M) : f(z,t) — f(z, )
extends to a bounded operator B : W*P(M x [a, w]) — W'P(M), called Trace operator.

We will topologise the space 9, W*?(M x [a, w]) of restrictions to time t = a of functions in
WHkP(M x [, w]), in case Trace operator is well defined, as cokernel of B, that is, as a quotient
space of W*P(M x [a,w]). This makes 9, W*P(M x |a,w]) a Banach space with stronger norm
than any WHP(M) for any [ < k — %.

3.1.3 Linear equations on manifolds.

Existence and Regularity.

It can be easily verified that the linear heat operator AF := %F + AF is a parabolic operator
and therefore is also an elliptic operator. All of the following results holds for operator A.

Theorem 22 (Regularity for elliptic operator). Let M be a compact manifold and AF = %F +
AF be an elliptic operator of second order. Given % <l<k<ooand F € W(M x |a,w])
and suppose that

AF e WH2P(M x [a,w]),  f| € 0. W*P(M x [a,0]),  f|_ € 0WHP(M X [, ).
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Then actually F € WHP(M x [o,w]).

Theorem 23 (Causality of parabolic equation). Let M be a compact manifold and AF :=
%F + AF + aV F + bF be an parabolic operator. Then

A WEP(M x [a,w]/a) — WF2P(M x [a,w]/a)
s an isomorphism of Banach spaces.

Theorem 24 (Garding’s Inequality and Regularity for parabolic operator). Let M be a compact
manifold, p € (1,4+0), k > 1> —o0 and AF := %F + AF be a parabolic operator. We write
WP ([3,7]) shortly for W*P(M x [3,7]). Suppose that

FeWh(a,w]), AF € W 22([a,w]).
Then F € WhP([r,w]) for all m € (a,w). Also, there exists a constant C > 0 such that

1 |[wer(rw)y < C (HAFHW’“*ZP([a,w}) + HFHWLP([Q,W])) :

In particular for homogeneous equation, the solution is C'*° and an arbitrarily weak estimate in
the past gives an arbitrarily strong estimate in the future.

Maximum principle and Comparison theorems.

Other than regularity results which are generally true for parabolic operators, the linear heat
operator also enjoys the following versions of Maximum principle. See Appendices for their
proofs.

Theorem 25 (Maximum principle). Let M be a compact manifold and f : M X [a,w] — R
be a continuous function with f‘ < 0. Suppose that whenever f >0, f is smooth and

of
— < -A .
ot — f+cy
Then in fact f < 0.
With the same proof as Theorem [25], one also has:

Theorem 26 (L*-Comparison theorem). Let f : M x [o,w] — R be a continuous function
on M, smooth for all time t > 0 such that
df

az—Aijbf on M x (a,w]

where b is a smooth function on M. Then there exists a constant B depending only on b such
that
1F o= < P 6] o
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3.2. REGULARITY ESTIMATE OF THE QUADRATIC TERM.

Using backwards heat equation and Theorem one can prove its version for L.

Theorem 27 (L'-Comparison theorem). Let f : M X [a,w] — R be a continuous function
on M, smooth for all time t > 0 such that

d,
C;; =—Af+bf on M x (a,w]
where b is a smooth function on M. Then there exists a constant B depending only on b such
that

1F] e < €] Lo

3.2 Regularity estimate of the quadratic term.

Theorem 28 (Regularity of the quadratic term). Let F : M X [a,w] — B C RY be in
WM x [o,w]) NC(M % [, w]) and

PF := ¢T3 (F)F/F].

Suppose that
1 +21
r>0, pq€(l,o0), r+1<s, =50 -,
p S q

(3.1)
Then one has PF € W"™P(X) and

|PFllwes < C (14 [Fllwsa) .
where C' is a constant independent of F.

Proof. We will suppose here that r, s are even integers so that the WP (respectively W*4) norm
of PF (respectively F') can be written as sum of LP (respectively L?) norms of its derivatives.
Also, we will use chain rule freely to differentiate the term I (F') using weak derivatives of F'.
The general and rigorous proof, which involves non-integral Sobolev space to treat r, s and a
detour to Besov spaces to justify chain rule, can be found in the appendices.

The derivatives of PF' that appear in its W™ norm are of form

C(x, F) [JorocF*

where 23 b; + > ¢; < r+ 2 and max{2b; + ¢;} <r+ 1 and C(z, F) is bounded on M. Using
Multiplication theorem for LP-spaces, one has

HC(:U, F) [Joboc F*

<IC G, F) e T |00 P2, < 10 F) e TTIF st

Lr
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as long as we choose p; € (1,00) such that % > > p%_. The strategy is to choose I%l_ big enough to
have W1 — W2itcipi in order to bound || F|| 25, +ci.00 DY || F|lyyo0» then use the upper bound
of 2b; + ¢; to justify that % szrz L> Z , meaning that such choice of p; are valid.

The straightforward way to have a sufﬁcient condition of p; such that W9 — W2biteipi jg
to use Sobolev embeddings but the result is sub-optimal because Sobolev embeddings do not
take into account the L>-boundedness of F' (its image lies in a compact of RY). A better way
is to use Interpolation inequality, by remarking that F € W% for all v € (1, +00) and writing
W2biteipi a5 an interpolation space of W% and W%V, It can be seen, by direct computation,
that the sufficient condition for W54 «—s W2biteipi i 2, + ¢; < s and

0<—— -<1- .
pi s q s
2b+c2

Choose - just a bit bigger than 2> one still has

2b; —|—cZ r+21 1

Z ~ ) < -,

s qg p

The conclusion follows. O]

3.3 Regularity for nonlinear heat equation.
Let p > dim M + 2, using the regularity estimate for the quadratic term, we now can prove:

Theorem 29 (Bootstrap for nonlinear heat equation). Let F' : M X [a,w] — B such that
F e W (M x [a,w]) and £t = 7(F,), i.e

dF®
dt

= —AF* + g5 (F)F'F]
and F‘MX{ , is smooth. Then F' is smooth on M x [a,w].

Remark 8. Note that since p > dim M + 2 = dim(M X [o,w]) + 1, if F € W*P(M X [o,w])
then F' and 8Fi are in C'(M x [a,w]) by Sobolev embeddings. It makes sense then to talk about:

1. the restriction and boundary condition at time t = « (in fact, by |Trace theorem, p > 1 is
enough).

2. the pointwise condition F: M X [o,w] — B C V.

Proof. We define the operators PF := ¢g"T"g (F VEP F} and AF := 2+ AF. We will abusively
denote WHP(M x [3,~]) by W P([3,7]). Our bootstrap scheme consists of 3 steps:
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3.4. SHORT-TIME EXISTENCE FOR NONLINEAR HEAT EQUATION.

1. Prove that F € W??([r,w]) for every 7 > a and p € (1,00). By compactness of M, it is
sufficient to prove this for a sequence p — 4o00.

2. Prove that F'is C* for all time ¢t > a.
3. Prove that F'is C* on M X [a, w].

Step 1. By Theorem AF = PF € W™ ([a,w]) whenever r < 1 and
Apply Garding inequality, for all 7 > a, I € W4([r,w]) € WP([r, w]) for 3
Choose é very close to (5 + 1)%, one sees that the condition on p is % > (5 + 1)% — >55, which
will be satisfied if % > (1-— %)%, ie. for all p < 1_’%/2. It remains to repeat this result to finish
the first step. We will say F' € W2*([r,w]) for F € W%P([r,w]) for all p € (1, 0).

Step 2. By Theorem 2§ for all r < 1, one has AF = PF € W™*([r,w]), therefore by
Garding inequality, F' € W"+%*([r,w]). Iterate this result and one has F' € Wk*([x,w]) for all
k € [2,00) and m > a. So F' is smooth for ¢ > a.

Step 3. We apply regularity result (Theorem for elliptic operator A and boundary

operators BY : ' +— F’MX , and B! : F F’MX{ X For ¢,r in Step 1, one has AF = PF €

W™4([a,w]) and BIF € OW™4, therefore F € W t4([a,w]) C W?P([a,w]) for the same p as
Step 1. This proves that F' € W**([a,w]), which also means that one has F' € W"29([a, w])
with no additional condition on ¢ except ¢ € (1,00). Iterate and one obtains the regularity of
F on [a,w]. O

1
q

Remark 9. The first 2 steps were to prove the regularity of F‘MX{ y which was then used as

a boundary condition in order to apply reqularity result for elliptic operator on manifold with
boundary.

3.4 Short-time existence for nonlinear heat equation.

We will choose as always p > dim M + 2. As before, M is a compact Riemannian manifold and
B C RY is a large Euclidean ball.

Theorem 30 (Short-time existence). Let F,, : M — B be a smooth map, then there exist
€ > 0 depending on F,, and F : M X [, + €] — B such that F € W*P(M X |a,  + €]) with

F’ =F, and
Mx{a}

dF,
ditt =7(F,) on M X |o,a+ €]

Proof. We find F' as a sum F = F, + F where F, € C®(M x [a,w]) satisfies the initial
condition and Fy € W*P(M X [a,a + €| /a).
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The nonlinear heat operator can be written as:
T : W?P(M x [a,w]/a)®N — LP(M x [a, w])®V
F# — T(Fb + F#)

where 7(F)® = —AFO‘+ging)fy(F)ﬂﬁ17j7, which can be rewritten as 7(F) = —AF+T'(F)(VF)%
The derivative of T at F in direction k € W2P(M X [a, w]/a)®V is

DT(Fy)k = —Ak + DT(F) - k.(VF)? + 2I'(F)VF.Vk,

or in local coordinates:

Ok I ij%k‘SFﬁFV 204T (FYFP FY
axiaxj_ijz+9 0y D+ 2971 (F)FF;

DT(Fy)* = g (

which is of form DT (Fy)k = —Ak — a(x, F)Vk — b(z, F)k where a,b are smooth.
Therefore if we note

H:W?P(M x [o,w] /)N — LP(M x [a, w])®N
F# — (jt —T)(Fb+ F#)

then the derivative of H at Fjz = 0 is

dk
DH(0) -k = pn + Ak + a(z, F,)VEk + b(z, Fy)k
which by Theorem[23]is an isomorphism from WP (M x [, w]/a)®N to WOP(M x [a, w] /o) ®N =
LP(M x [, w])®N. This shows that H is a local isomorphism mapping a neighborhood of 0 to
a neighborhood of (£ — 7)F.
Define g. € LP(M x [, w])®Y by

0, if t € [a, 0 + €]
Je =
(%—T)Fb, ift>a+e¢
d

which is arbitrarily LP(M x [o,w])-close to (5 — 7))} for 0 < € < 1. There exists therefore

Fy € W2P(M x [a,w]/a)®N such that H(Fy) = g., meaning that the function F = F}, + Fj :

M — V satisfies F‘MX{ = F, and % — 7(F,) =0 for t € [0, o + €.
By Regularity Theorem , F is C* for t € [o, + €]. Theorem [12] assures that the image
of F'is in M, hence in M’ for t € [a, a + €]. O
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Chapter 4

Global existence for nonlinear heat
equation and harmonic maps between
Riemannian manifolds

Let M be a compact Riemannian manifold. We want to solve the following nonlinear heat
equation where F': M — M’ C BC V =RY:
Mt AR+ T(E)(VEY

We have proved that the solution exists in short-time and is smooth whenever it exists. We will
now establish long-time existence using continuity method: we will show that if the solution
exists on [a, w,| where w, is an increasing sequence to w, then the solution exists on [, w]. We
then apply short-time existence to gain a small open interval where solution still exists. We
then conclude that the solution exists globally on [, +00) since this interval is connected.

The crucial step to prove that the solution can be extended on [a, w] is to uniformly bound
all of its derivatives in time of evolution [a,w). These estimates will also be useful to justify
the convergence of F; in C*°(M) to a smooth function Fl, which will eventually be a harmonic
map from M to M.

Recall that we proved in Corollary under the hypothesis of negative curvature, the
boundedness of || Fi|[w22(x) by a constant C' depending only on curvatures of M, M’ and the

dF;

initial total energies. Since “;* relates to spatial derivatives of F' by the nonlinear heat equation,

it is easy to see that ||F}|lw22(arx[r,r+4)) is bounded by a constant independent of 7. We will
denote W*?(M x [B,7]) by W*?([8,7]).

Theorem 31 (W*2-boundedness). Suppose Riem(M') < 0. There ezists a constant C' depend-
ing only on §, the metrics and initial total energies such that

|Fllw2zrrtrey < C foralla <7 <w—4.
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Proof. Since

2
Lt

F? < [NE gt 42 [ AR d 2 [ |D(EN(VEY
|Fveqrrsay < | I Ellfeendt +2 [ ARG dt+2 [ [D(E)VE)

The first term and the second term are bounded by C?§, the third one, since I'(F}) is bounded,
by C?§ where C' is a constant only depending on the metrics and initial total energies. O

The estimates of higher derivatives of F' will be established in the same strategy as the
bootstrap: first in W2? for all p then in W*?® for all k, p, then in C.

4.1 Estimate of higher derivatives.

Lemma 32 (W??-boundedness). Suppose Riem(M') < 0. For all p € (1,400), there exists
a constant C > 0 depending only on o, p, the metrics and initial energies such that for all
a+d<t<w-—=9:

[ Fllw2a(prriay < C

Proof. Applying Garding Inequality to the parabolic equation AF = I'(F)(VF)? where A :=
% + A is the heat operator, one has

IElw2orrsan < C (ILENTEV o oy + [ Fllwoeges ovap)
The second term of RHS is already bounded by applying Theorem |31|to %5. For the first term:

|N(F)(VF)?

! 2 o /
oty S CONMNVFPlae g ey = CONE o g.r45)-

Recall that by Theorem , the potential density satisfies % + Ae — Ce < 0 for certain
constant C' depending only on the metric of M. By Maximum principle (Theorem , one has
e < 1, where 1, is the solution of

%% + A% - C¢T =0
o,
2
We apply Garding Inequality again for 1, and obtain

= € s

He(F)HLp([ng,TM]) < HWHLP([P%,TM]) < C’WTHLI([T%,TM)- (4.1)

Now apply L'-Comparison Theorem|/[27| to 1/, one has

36/2
e < /O ePldtlle] |l < C. (4.2)
2 2

36/2
Worllorrg o < [ I

The lemma follows from (4.1) and (4.2)). ]
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4.2. GLOBAL EXISTENCE FOR NONLINEAR HEAT EQUATION.

We can now estimate higher order derivatives.

Theorem 33 (W*P-boundedness). Suppose Riem(M') < 0. For allp € (1,+00) and k < +00,
there exists C' depending only on k, p, the metrics and initial energies such that

1 F [ we(irrrs)y < C
foralla4+06 <7 <w-—29.

Proof. Applying Gérding Inequality to the equation % + AF, = I'(F)(VF)? then Regularity
estimate for the quadratic term (Theorem , one has for € < §:

|Fllwkogrrisy < Ce (IFlwese—ersay + IDENVF) lws-2(r—crsa)

q/p
é Ce <1 + C (1 + ”FHW‘S’Q([Tfe,Tﬁ*(SD) >

as long as k — 1 < s and % > %é Therefore if | F||lwsa(r,r+a) < C(0,8,q) forall f <7 <w—0
and g € (1,400), we just proved that

||F||Wk»P([T,T+5]) < 0(67 kvp)

+e<t<w-—-9¢
for all {6 c=T=v since || F||lwsa(jr—er+a)) < 2C(6, 5, q).

kE<s+1pe(l,+00)

One can then conclude by induction on k, with step %, starting with £ = 2 and ¢ =

(] oo

divided by 2 after each induction step.

4.2 Global existence for nonlinear heat equation.

Theorem 34 (Global existence). Suppose Riem(M') < 0. The solution of nonlinear heat
equation

CZI; = —AF +T(F)(VF)? (4.3)

with smooth initial condition exists globally for all time t > «.

Proof. Let F, be a sequence of solution of (4.3 on [, w,] with w, increasing to w then they
coincide by uniqueness of the solution. As discussed in the beginning of this part, it is sufficient
to prove that the solution extends to [a, w]. Let F be the solution on [, w) such that F ‘[ =

o,wn]
F,,, then by Theorem , for all 7 € [o,w — §):
||DZJD;F||L°°(M><[T,T+6]) < CSobolev||D11€LD;F||W’“P(M><[7—7T+5]) < CSobolev~C(k7p7 5)

where, if we choose k sufficiently large, Csopolev is the constant of Sobolev imbedding W (M x
[0,0]) < C(M x [0,6]) and C(k,p,d) is the constant provided by Theorem
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So all partial derivatives of F' are uniformly bounded on [, w). This proves that F' extends

to a solution on [a,w]. In fact F‘ = F‘ converges in C*(M) as T — w, since
T

Mx{r}

||Loo< max H.DBF||LOO|T_T/|.

DF| —
| ’T 18l=llefl+1

We have just proved the first part of the following theorem.

Theorem 35 (Eells-Sampson). 1. Let M, M’ be compact Riemannian manifolds with Riem(M'") <

0. Then for every smooth map fo: M — M' C B C RY, the nonlinear heat equation

{df* =7(f1), forallt>0
f,y = for

admits a globally defined smooth solution f,. Moreover, all derivatives D®f, remain
bounded as t — +00.

2. For a suitable sequence {t,} increasing to +o0o the sequence { fi,} converges in C*(M)
to a function fo with 7(fs) = 0. Therefore any map fo: M — M’ is homotopic to a
harmonic map.

Proof. For any sequence {t,}, one can extract from { f;, }, since their derivatives are uniformly
bounded, a subsequence {f;, } converging in C*(M,R"). By a diagonal argument, one can
extract from any sequence {f; } a subsequence converging in C*°(M,RY) to f.. Abusively
denote this subsequence by {f;. }, by Theorem

lim K(f;,)= lim |7‘ fu)l2 =

n—oo n—oo

Therefore 7(f;,) — 0 in L*(M)®N. But also 7(f;,) — 7(fs) in C°(M,RY), one has 7(f) =
0. O]
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Chapter 5

Minimal immersions of S?

5.1 Brief view of Sacks and Uhlenbeck’s strategy.

Let M and N be compact Riemannian manifolds (without boundary), M is a surface and N
is isometrically embedded in R¥. It was showed by Eells and Sampson [ES64] that if N is
negatively curved than any map from M to N is homotopic to a harmonic map. The idea
of Sacks and Uhlenbeck in [SU81| consists of (1) approximating the energy functional E by a
family E, satisfying Palais-Smale condition, whose nontrivial critical values can be more easily
proved to exist and (2) trying to prove that the critical maps s, of F, converge in C'-topology.

We will first review the general machinery of Morse-Palais-Smale theory and prove the
existence of s,. The convergence of s, in the case of surface is due to the facts that energy
functional £ is a conformal invariant of M, in particular E is invariant by homotheties (i.e. £
remains unchanged when we zoom in and out), which allows us to justify the C''-convergence
(under conditions of N) except at finitely many points using a local estimate and a suitable
covering of M.

Sacks and Uhlenbeck used an extension result for harmonic map, in an elegant argument to
prove that if the above sequence {s, } fails to converge at a point, for a certain surface M, then
one has a nontrivial harmonic map from S? to N. Therefore if such sequence {s,} from S? to
N exists, for example when 7, (N) is nontrivial for a certain k > 2 then, whether s, converges
or not, there exists a nontrivial harmonic map from S? to V.

Finally, the theory of branched immersion of surfaces by Gulliver-Osserman-Royden [GORT3]
can be applied to show that the harmonic map obtained this way is a conformal, branched,
minimal immersion of S? to N.
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5.2 General machinery by Morse-Palais-Smale.

5.2.1 Perturbed functionals F,,.

Let s : M — N < R* be a map from a compact surface M to a compact Riemannian
manifold N isometrically embedded into R¥. Recall that the energy functional of s is given by
E(s) == 1% [i|ds]?dVy = L [1,(s*gn, gr)dVar. The perturbed energy functionals are

Eo(s) = /M (1+1dsP)"av, a>1

We will suppose, by rescaling the metric gy, of M that the volume of M is 1, so when a =1,
Ey =1+ 2E(s) is just the previously defined energy. Using (a + b)* > a® 4 b* and Jensen’s
inequality, one has E,(s) > 1+ (2E(s))* for all @ > 1. Also, since we only interest in the case
a close to 1, let us also suppose that o from now on is smaller than 2.

By Sobolev embedding, one has W2*(M R*) C C°(M,R*) compactly for all o > 1.
It then makes sense to talk about W12*(M, N) c C°(M,N) which consist of elements of
Wh2e(M,R*) C C°(M,R*) whose image lies in N.

Theorem 36 (Palais). The spaces C*°(M,N) C W'**(M,N) C C°(M, N), where o > 1, are
of the same homotopy type and the inclusions are homotopy equivalences. In particular, their
connected components are naturally in bijection.

We will also need the following version of Morse theory for function spaces, also developed
by R. Palais.

Theorem 37 (Morse theory for Banach manifolds). 1. If F is a C? functional on a com-
plete C? Finsler manifold L and F satisfies Palais-Smale condition then

(a) The functional F admits minimum on each connected component of L.

(b) If F has no critical value in [a,b] then the sublevel {F < b} retracts by deformation
to the sublevel {F < a}.

2. The pair (L, F) = (W'?*(M, N), E,) with « > 1 satisfies the condition of the first part.
By consequence, one has

Corollary 37.1 (Component-wise minimum of E,). The minimum of E, in each connected
component C' of Wh2*(M,N), a > 1 is taken by some s, € C>°(M, N) and there exists B > 0
depending on the component C' such that

min F, < (1+ B*)~
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5.2. GENERAL MACHINERY BY MORSE-PALAIS-SMALE.

Proof. By Theorem (37, E,, admits minimum at s, on each component C' of W'2*(M, N). By
writing down the Euler-Lagrange equation of E, and apply regularity estimates, one can prove
that s, is actually smooth. By Theorem , the preimage of C by inclusion C*°(M,N) C
Wh22(M, N) is a connected component C” of C*°(M, N) over which s, is the minimum of E,,.
Take B = sup,, |du| for an arbitrary element u € C” and the conclusion follows. O

Remark 10. Corollary is trivialised when WY2*(M, N) is connected (for one o or equiv-
alently for all o). In this case, s, is a constant map and B = 0.

To establish a nontrivial analog of Corollary in the case where the spaces of maps from
M to N are connected, we will have to look at the submanifold Ny = N formed by constant

maps.

5.2.2 Tubular neighborhood of the submanifold of trivial maps.

Fix y € N, considered as a constant maps in Ny. We will summarise a few facts about the
tangent space of W'2%(M, N) at y.

Remark 11. 1. The tangent T,W'?*(M,N) can be identified with W2*(M,T,N). The
subspace T, Ny contains constant maps from M to T,N.

2. The fiber N, over y of the normal bundle N of Ny can be identified with
N, = {v € W' (M, T,N) : /M vdV = o}
The exponential map on TW2%(M, N) can be defined as follows:
e: TW*(M,N) — W'2*(M, N)

(s,v) —> (m > eXDy(y) v(x))

where s € W12%(M, N) and v € T,Wh2*(M, N) is a W12 vector field along s(z). With the
representation of normal bundle N as Remark [I1] the restriction of e on N is given by

el : N — W (M, N)
(y,v) — (2 exp, (v(z)))
where y € Ny = N and v € WH?*(M,T,N).

Lemma 38. The restriction e‘N of e on N is a local diffeomorphism mapping a neighborhood
of the zero-section of N onto a neighborhood of Ny in W12*(M, N).

Proof. 1t can be calculated that
de(yp)(a, v) = (z = a+v(x)) € Tmea(Mu N) = W1,2a(M’ TyN)

for a € T,N and v € N, € Wh**(M,T,N). It is invertible since a is tangential to Ny and
v € N, is in the normal component. The Inverse function theorem applies. O
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5.2.3 Ciritical values of F,.

The exponential map previously defined on the normal bundle of Ny in W12%(M, N) allows us
to retract by deformation a small neighborhood of Ny to Ny. We will prove that if the energy
E,(s) is sufficiently close to 1 = E,(Np) then s is sufficiently W'?*-close to Ny and hence can
be retracted to Ny, in other words, E![1,1 + §] retracts by deformation to Ny = E_!(1).

Proposition 39. Given o > 1, there exists § > 0 depending on « such that E;'[1,1 + §]
retracts by deformation to E;'(1) = Np.

Proof. Let s € E;'[1,1+ 6], using (a + b)® > a® + b, one has
144 >/ (14 |ds[?)?aV > 1 +/ ds|dV
M M

therefore ||ds| 2« < §'/2%. By Poincaré-Wirtinger inequality, ||s — [4; s|[w1.2« < C3'/* where C
is the Poincaré-Wirtinger constant.

By Sobolev embedding, maxys |s — [y, 8| < Culls — [is S|lwi2a where the Sobolev constant
C, can no longer be chosen uniformly in a« — 1. Fix an ¢y € M, one has

3—/ s —1—’/ s — s(xo)
M |lwt2a M

Now choose § < 1 depending on « such that s is in the neighborhood of Ny given by Lemma

dyr2a (s, No) < ||s — s(zo)||wrze < < C o' 4

s can be written as

s(z) = e(y,v(z)) = exp, v(z)
where y € Ny and v € WH2*(M, T, N) depend continuously on s € W?*(M, N). We can define
the deformation retraction by

o EJUL,1+06) x [0,1] — EJY1,1+ 6]
(s,t) —> (x > exp, tv(x))

It is clear that o is continuous and oy is a retraction. The only thing to check is that the image
of o remains in E;'[1,1 + §] at all time. This can be checked by showing that %Ea(at) >0,
hence E,(0y) < Ey(01) <146 forall 0 <t <1. O

We will now prove the existence of nontrivial critical value of E, in an interval (1, B) for a
certain B > 1 sufficiently big independently of o > 1.
Fix zp € M and consider the map

p: C°(M,N) — N
s+— f(z0)

then p is a fiber bundle and therefore is a Serre fibration. In fact fix ¢o € N then for all g € N
near ¢, there is a vector field v, supported in a small ball centered at gy such that the flow of
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5.2. GENERAL MACHINERY BY MORSE-PALAIS-SMALE.

v, from time 0 to 1 turns ¢ to g, i.e. @vqé(qo) = ¢, and that v, varies continuously in g. Then
any fiber p~!(q) can be identified with p~!(qo) using the flow of v,. We will denote by Q(M, N)
the topological fiber of p.

We will use a few facts from algebraic topology, briefly summarised here.

Fact 1. 1. (Long exact sequence of homotopy) Let p : E — B be a fiber bundle of fiber
F =pY(by) > fo, then one has the following long exact sequence

= (F) =2 1 (BE) 2> 1y (B) — 2> 1y (F) —— ... — 70 (E) — 0

where . ' — F s the inclusion.

2. If p admits a global section s, then one has a retraction S, of py:

T (E) p:* Tn(B)

hence p, is surjective and O factors through 0, which gives us the short exact sequence

0 — 7y (F) —2> 7, (E) 2> 7,(B) —=0

where p, admits a retraction s,, so the short exact sequence splits and we have
Tn(E) 2 7, (F) & mp(B).

Now apply this result to the fiber bundle p : C°(M, N) — N of fiber Q(M, N), which has
Ny as a global section, one obtains

T (CY(M, N)) & 71,(N) @ 7, (QM, N)).

Theorem 40 (Nontrivial critical value of E,). If C°(M, N) is not connected, or if Q(M, N) is
not contractible, then there exists B > 0 such that for all o > 1, E, has critical values in the
interval (1, (1 + B?)®).

In particular, if M = S* and if the universal covering N of N is not contractible then E,
has critical values in (1, (1 + B?)%).

Proof. If C°(M, N) is not connected, one only needs to apply Corollary to a connected
component of W2*(M, N) not containing Ny. We now suppose that C°(M, N) is connected
and (M, N) is not contractible.
In this case, there exists n > 0 such that 7,(Q(M, N)) is nontrivial and contains a nonzero
element v : S" — Q(M, N) which is not homotopic to any 5 : S* — Ny in 7,(C°(M, N)).
Choose B := maxgesn zem |dy(0)(x)| then by definition

Ea(4(0)) < (1+ BY)* VoeS" a> 1.
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If E, has no critical value in [1 + %“, (1 + B?)®] where 4, is given by Proposition , then
by Theorem [37, E;'[1, (1 + B%)?] retracts by deformation to E;'[1,1+ d,] which retracts by
deformation to E;'(1) = Ny. But this means that v is homotopic to a certain ¥ € m,(N),
which is a contradiction.

As an application, if M = S? and the universal covering N is not contractible then the long
exact sequence of homotopy for the bundle N — N with fiber of dimension 0, gives

Tn(N) =1 (N), Vn > 2.

Since N is simply-connected and not contractible, there exists n > 2 such that 0 # m,(N) =
T (N) = m,_2(2(S? N)), where the last equality follows from definition of homotopy group.
The general argument applies. O]

5.3 Local results: Estimates and extension.

We will say that the map s : M — N is a critical point of E, on a small disc D(R) C M if s
satisfies the Euler-Lagrange equation of E, (as functional on W2*(M, N)) on D(R).

Remark 12. Rescaling (D(R), gn), where R < 1 and gy is €-close to the Euclidean metric, to
the unit disc D one obtains a metric gy that is still e-close to Fuclidean metric. The curvature
of gar is R? times smaller than that of ga.

If s: D(R) — N is a critical map of E, on D(R), then the composition § of s and the
rescaling operator D — D(R) satisfies the Euler-Lagrange equation of E, = R*1~) [, (R? +
|d3|?)*dV where dV is the volume form of the rescaled metric ;. We will abusively use the
same notation for s and s and regard s as a map on the unit disc D.

Lemma 41 (Sacks-Uhlenback’s Main estimate). For all p € (1,400), there exists € > 0 and
ag > 1 depending on p such that if

e s: (D,g) — N is a critical map of E, on D(R)
e E(s)<e, 1<a<ag

then
|ds||wrepry < C(p, D')||ds||2(py, for all disc D" € D

Remark 13. In fact ag, e and C(p,D’) depend on the rescaled metric g on D, but if R < 1
and § is very close to Euclidean metric, then one can choose these parameters independently of

g.

A consequence of (the proof of) Lemma [41]is the following global result:
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5.4. CONVERGENCE OF CRITICAL MAPS OF FE,.

Theorem 42 (Critical maps of low energy are trivial). There exists € > 0 and ag > 1 such
that if

e s: M — N is critical map of E,
e E(s)<é, 1 <a<a
then s € Ny and E(s) = 0.

We proved in the last section that, under certain algebraic topological condition on N, E,
admits critical value v, € (1, (1+B?%)*). We now can conclude that, by Theorem 42| the critical
values v, are bounded away from 1, i.e. inf, v, > 1.

We will also need the following extension theorem:

Theorem 43 (Extension of harmonic maps). If s : D\ {0} — N is a harmonic map with
finite energy E(s) < oo, then s extends to a smooth harmonic map §: D — N.

5.4 Convergence of critical maps of FE,,.

We proved in Theorem 0| that if C°(M, N) is not connected or if Q(M, N) is not contractible,
then there exists a family {s,} of critical maps of E, with bounded, nontrivial energy E,(s4) <
B. Since

o [y |dsal? € (Ea(sa) — 1) is bounded uniformly on o
* ||Sal|z= is bounded by compactness of N.

the W1H2(M, R¥)-norms of {s,} are bounded. By reflexivity of Sobolev spaces, there exists a
subsequence {sz} weakly converging to s in W1?(M,R*) with

Isllw < T inf [1ssllws

We do not know at this moment if the convergence is C°, or if s is continuous, or even if the
image of s remains in N. The following key lemma answer these questions on a small disc of
M in the case the energy of s, is small.

Lemma 44 (Key). There exists an € > 0, in fact given by the Main estimate Lemma |4 1| with
p =4, such that if

e 5o: D(R) — N C R¥ are critical maps of E, in W' (D(R), N),
e E(s,) <€ and s, converges weakly to s in WH2(D(R),R¥),

then
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e the restriction of s on D(R/2) is smooth harmonic map with image in N,

e 5o — s in CY(D(R/2),N)).

Remark 14. There are two different ways to define convergence of a sequence s, to s in C1(Q)
on an open set §2:

1. The sequence s, and s extend to C'(Q) and have finite norm maxg |s| + maxq |ds| and
maxq |Sq| + maxgq |dss| and

max S0 — 8] + max |ds — dsa| — 0.

In this case, we will say that s, converges to s in C1(Q).

2. CY(Q) is topologised by a family of seminorms T'x : s — maxg |s| + maxy |ds| for
K € . This makes C*(Q) a Fréchet topological vector space. If the sequence s, converges
to s under this topology then we will say that s, converges uniformly to s on compacts of

Q.

Proof. We consider s, and s as maps from the unit disc D to R*, then by Main estimate Lemma
for p = 4, since E(s,) < €, one has:

ldsallwsaog mze) < O DL/2)dsal 20y = C (4, D(L/2)E(s0)"

So {s4} is bounded in W4(D(1/2), R*) which is embedded compactly into C*(D(1/2),R¥).

We now can prove that s, converges strongly to s in C1(D(1/2),R¥): If there was a sub-

sequence {sg} whose restriction to D(1/2) remains C'-away from s, then by compactness of
W4(D(1/2),R¥) — CY(D(1/2),R*), we can suppose that {sz} converges in C'! to a certain
s # s on D(1/2). But as a subsequence of {s,}, {sg} converges weakly to s on D, hence on

D(1/2), we than obtain a contradiction using the uniqueness of weak limit.
By considering the Euler-Lagrange equation and letting @ — 0, one concludes that s is a
harmonic map from D(1/2) to N. O

The global convergence of {s,} can be established by a well-chosen covering of M by small
balls or radius R.

Proposition 45. Let s, : M — N C RF be critical maps of E, on M such that s, converges
weakly to s in WH2(M,R¥) and E(s,) < B. Then there exists | = (B, N) such that given any
m > 0, one can find a sequence {Tm1,...,Tmy} C M and a subsequence {sam)} of {sa} such
that

!
Sa(m) — 5 in ok (M\ U D(xmﬂ-,2_m+1),N>

=1
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5.5. NONTRIVIAL HARMONIC MAPS FROM SZ.

Proof. We cover M by finitely many balls D(y;,27™) such that each point is covered at most
h times by the bigger balls D(y;,27™!). By Lemma , h can be chosen independently of m
as 27" —= 0.

Since Y2 [py, 2-m+1) |dsal* < Bh, choosing I = [B57, we see that there are at most [ balls
D (Yai, 27™T1) with centers depending on «v, on which the energy E(s,) is less than e. Passing to
a subsequence {sq(m)} of {sa}, we can suppose that {ya(m).} converges to z,,; as {a(m)} — 1.
But since the points {y;} are of finite number and separated, ya(m),; = Tm, eventually and we
can suppose that the bad balls D(ya(m),i) where energy of s, () surpasses € are the same for
eVery So(m)-

Now apply Lemma [44] to the sequence {s,(m)} on all the other 27 -balls, one sees that
{Sa@m)} converges in C*' to s on all D(y;,2~™) except those centered at z,,;. The conclusion
follows. m

Using a diagonal argument, we can find a subsequence {sg} of {s,} that converges to s
uniformly on compacts of M \ {z1,...,z}.

Theorem 46 (Convergence of {s,}). Let s : M — N C R* be critical maps of E, on M
such that s, converges weakly to s in WL12(M,R¥) and E(s,) < B. Then there exist at most
l points xy, ...,z in M, where | is given by Proposition and a subsequence {sg} of {sa}
such that

sg — s in CY(M\ {z1,..., 2}, R¥) uniformly on compacts.

Proof. By passing to a subsequence {my} of {m}, we can suppose that {z,,;} converges to z; in
M. Choose the diagonal subsequence {sg} from {sq(m)} that consists of Sa(m)(a,,) Where a,, is
sufficiently big such that a(m)(a,,) is increasing and || Sa(m) ) = Sa(m) (@ llot (MU D@27 +1) < %
for all b, ¢ > a,,. Then the sequence {sg} converges uniformly on compacts of M \ {z1,..., 2}
because {U; D(Tm.i, 2™ 1)}, is an exhaustive family of compacts of M \ {z1,..., 2} O

Remark 15. With the same notation as Theorem [0,

1. The image s(M \ {x1,...,x;}) lies in N. Also, using the Euler-Lagrange equation, one
sees that s is a (smooth) harmonic map from M\ {xy,...,x;} to N.

2. Since E(s) < ||s[[31: < liminf, [|sa]]? < +oo, S‘M\{ extends to a harmonic
L1500y

map §: M — N. We can therefore suppose that the limit s of Theorem [{0] is smooth
harmonic map on M and of image in N.

5.5 Nontrivial harmonic maps from S°.
We will now prove the existence of nontrivial harmonic maps from S? to a compact Riemannian

manifold N satisfying the conditions of Theorem [40]
The following theorem does not suppose any condition on N.
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Theorem 47. Let M be a compact surface and s, be critical maps of E,. Suppose that

e s, converges in C' to s uniformly on compacts of M \ {x1,...,2} but not on M \

{za,..., 21}
e E(sq) <B
Then there exists a nontrivial harmonic map s, : S> — N.
Before proving the theorem, let us state its corollary.

Corollary 47.1 (Nontrivial harmonic map from S?). If the universal covering N of N is not
contractible then there exists a nontrivial harmonic map s : S* — N.

Proof. By Theorem 40| and Theorem , there exist critical maps s, : S? — N of E, corre-
sponding to critical values E,(s,) in (1+4, B). We claim that {s,} cannot converge in C* (M)
to a trivial harmonic map s € Ny. In fact, if it did,

146 < lim/ (1+|dsa|2)‘“dV:/ (14 [ds[2)dV = 1
a—1 Jpr M

which is contradictory.
Therefore, we only have two possibilities:

o {sa} does not converge in C'(M) to s, then by Theorem |47 there exists a nontrivial
harmonic map s, : S> — N.

o If {s,} converges in C*(M) to a certain §, then as argued above, 5 is nontrivial.

In both cases, nontrivial harmonic map from S? to N exists. ]
Let us now prove Theorem [A7]

Proof of Theorem[[7. If there is no C' convergence near x1, we claim that:

Assertion 1. For all C > 0 and § > 0, there exists a > 1 arbitrarily close to 1 such that

“max |ds,| > C.
D(z1,26)

Moreover, we can suppose that maxg,, o5 |dse| = maxp(, 4 [dsal-

Suppose that was not the case, then there exist C',§ > 0 such that maxp,, 26) |dsa| < C for
all a > 1 sufficiently close to 1. Choose a radius R < § such that

/ dso|* < TR?C? < ¢
D(z1,R)

It suffices to apply Key lemma 44| to see that s, — s in C'(D(x1, R/2)), hence s, converges to
s in CY(M \ {xs,...,7;}) uniformly on compacts. Moreover, since {ds,} converges uniformly
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5.5. NONTRIVIAL HARMONIC MAPS FROM SZ.

to ds on D(x1,26)\ D(x1,0), we can suppose, with a sufficiently close to 1, that the maximum
is actually attained in D(z1,9).

Therefore, we can choose a sequence {C),} increasing to +oco and {d,,} decreasing to 0, such
that C,0, diverges to +oo and there exists a sequence {a,} decreasing to 1 such that

dse. (yn)] == max l|ds, | = max |ds, |=C,
|dSa, (Yn)] D(m,an)’ ol D(%%n)\ ol

We define

Say, + D(6,C) — N
T +— S, (Yn + C’;lx)

then |d§an (O)’ = MAaXp(C,d,) |d§an| =1.

Fix any large R < +oo0, since C,,0,, — 400, 3,, is eventually defined on D(R) and is a
critical point of E,, with respect to a metric g, on D(R) converging to the Euclidean metric.
The energy F(3,, D(Cnén),gn) = F(5,, D(yn,én)’gM) <B.

We claim that Proposition {45 and Theorem [46| remain correct when M = D(R) and s,
are critical maps of F, with respect to metrics g, converging to the Euclidean metric. To be

precise:

Assertion 2. Let 5, : (D(R),§,) — N C RF be critical maps of E, such that

o s, converges weakly to s, in WY2(D(R), Euclid),

e E(sy) <B
then there exists at most | points {xy,...,x;} in D(R) and a subsequence {sz} such that sg
converges to s, in C*(D(R/2)\{z1, ...,z }, R*) uniformly on compacts, and s, is harmonic in
D(R/2).

The two ingredients of the proof of Proposition 45| and Theorem [46| to be investigated are
the covering and the estimate from Lemma [{I] For the estimates, we already remarked that
the parameters oy, €, C'(p, D) of Lemma 41| can be chosen independent of the metric g, if they
are close to Euclidean. For the covering, the investigation is not on the constant h, which can
be chosen to be 39™M but on how small the radius of the covering balls must be, but Lemma
110| states that their size is dictated by the Ricci curvature and sectional curvature of g,, which
are also uniformly bounded.

Using Assertion , passing to a subsequence of {5,, } if necessary, we can suppose that
Sa, — S« in CY(D(R),R¥). Note that there is no singular point where {3,, } fails to converge
because |d3,, | is bounded uniformly on D(R) (hence cannot explode as in Assertion [I). We
can also choose, by a diagonal argument, a subsequence of {3,, } that converges to s, in C''(R?)
uniformly on compacts.

55 131



ECOLE
POLYTECHNIQUE 5. MINIMAL IMMERSIONS OF S2

UNIVERSITE PARIS-SACLAY

It is clear that s, : R? — N is harmonic and nontrivial because
‘ds*(o)’Euclid = aligll ’dgan (O)‘gan = 1

Also,

/ \ds.|?dE = lim / d5a, [2dV;, < limsup2E(s,| ) < 2B
D(R) an=1/D(R) D

a—1 (1,26n)

which means the energy of s, on R? is bounded above by 2B.

Now since (R?, Euclid) is conformal to S?\ {p}, s. can be seen as a harmonic map on S?\ {p}
with the same (finite) energy. By Extension theorem [43] s, extends to a nontrivial harmonic
map from S? to N. O]

Remark 16. 1. We can have a better estimate of E(s.). For any R > 0, one has

)+ E(s ) < lim sup )+ E(Sa,

( ‘M\ugle(m,én) an—1

E(sq,

E(s.

M\Ué—lD(xiyan)>:|

D(R) D($175n)

Let 6 — 0 then R — +o00, one has

E(s.) + E(s) < limsup E(s,).

a—1

2. The proof of Theorem |47 also gives a constraint on the image of s.: since s.(D(R)) C
Ui<g<aSs(D(x1,20)) for all a arbitrarily close to 1 and 6 arbitrarily small, one has

()N N U ss(Dlar,9))

—0a—11<B<a

5.6 Minimal immersions of SZ2.

We use the following result:

Theorem 48 ([CGT75], [GORT3], [ES64]). If s : S — N is a nontrivial harmonic map and
dim N > 3, then s is a C'*™° conformal, branched, minimal immersion.

The "minimal" part follows from [ES64], the "branched" part follows from [GORT3] and
the "conformal" part follows from [CGT5] and the fact that there is no nontrivial holomorphic
quadratic differential on S?. Theorem 47| gives:

Theorem 49. If the universal covering N of N is not contractible then there exists a C™
conformal, branched, minimal immersion s : S* — N.
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Chapter 6

Interpolation theory and Sobolev
spaces on compact manifolds

6.1 Motivation

We will define a more general notion of Sobolev spaces on compact manifold than those in
[Aub98| and [Jos08], where Sobolev spaces on a (Riemannian) manifold W*?(M) of dimension
n are defined for k € Z>o and for uniform weight, meaning that a function f € W*P(M) is

supposed to be weakly differentiable up to order k in every variables z1, ..., x, in each smooth
coordinates. The space W*P(M) in this case can be defined by density with respect to a norm
involving derivatives a%'

Meanwhile, the suitable function spaces to solve parabolic equations are those whose reg-
ularity in time is half of that in space, i.e. we will solve parabolic equations on the Sobolev
spaces WHP(M x T') of functions k times regular in M and k/2 times regular in 7. We cannot
always, (for example when k is odd) find a simple norm involving derivatives of f to define
WP by density. This generalisation will be done using Stein’s multipliers.

Another generalisation will be made is to allow the manifold to have boundary. Even when
we only want to solve parabolic equation on manifold M without boundary, the underlying
space is M x [0, T] which has boundary. Moreover, we will have to discuss the notion of trace
in order to use the initial condition at ¢t = 0.

In this part, all manifolds will be compact, with no given metric. This is not really a
generalisation since on compact manifolds, Sobolev spaces W*?(M), as defined in [Aub98] and
[Jos08] set theoretically do not depend on the metric and (the equivalent class of) their norms
also independent of the metric.

We will mainly follow the discussion in [Ham75], where the author also works on manifold
with corner, i.e. irregular boundary. The corners, modeled by R"% x ]R’;O, appear naturally,
for example at the boundary OM in t = 0. The extra effort to cover the case of corners is not
much (see [Ham75l page 50]) and essentially algebraic.



ECOLE
POLYTECHNIQUE 6. INTERPOLATION THEORY AND SOBOLEV SPACES ON COMPACT MANIFOLDS

UNIVERSITE PARIS-SACLAY

6.2 Preparatory material

We will recall here basic elements of Fourier transform on the space of tempered distributions
and then we will have a quick review of interpolation theory.

6.2.1 Stein’s multiplier

Let X = R" be the Euclidean space, coordinated by z1,...,x, and £ = R", coordinated by
&1, ..., &, be the frequency domain of X. Recall that Fourier transform is an isomorphism in
the following three levels

1. The Schwartz space of rapidly decreasing smooth functions S(X) whose elements are
smooth and decrease more rapidly then any rational function. The Schwartz space are
topologized by the family of semi-norms |f|. 3 = supy |[#*D%f(x)].

2. The space L*(X) of doubly-integrable functions.

3. The space of tempered distributions, i.e. the dual space S*(X) of S(X) under the weak-*
topology given by S(X).

To simplify the notation, we use DY = (lifl o (%%)an and P(D) =Y, c,D* for any

i 0z
polynomial P. -
Recall that for any u € S(X) and for any polynomial P, one has P(D)u = P(§)u(¢). This

can be extended to non-polynomial function of M (D) of D by
M(D)u := M(§)a(E)

where M is a slowly growing function, i.e. D*M () grows slower than certain polynomial as
€] = oo.

The following theorem give a criteria of the function M such that M (D) : S(X) — S(X)
extend to LP(X) — LP(X).

Theorem 50 (Stein). If for any primitive inder o = (ay, ..., ), i.e. each a; being 0 or 1
(there are exactly 2" primitive indices), one has

€ DM (E)] < Ca
then M (D) extend to a bounded linear operator on LP(X).

Definition 6. 1. A slowly growing function W on € with W (&) > 0 is called a weight if
for all primitive index o, one has

[E*DW ()] < CaW (§).
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2. The Sobolev space W*P(X, W) with respect to weight W, k € R,1 < p < oo is the
vector space

WhP(X, W) = {u €8 (X): W(D)'ue LF(X)}

normed by ||ul|wre = ||W (D)*ul| L.

Example 4 (Weight given by ¥ = (0y,...,0,)). Note by o := lem(oy,...,0,) then Wx(§) =
1/20
<1 + &7 4 —i—é’%"”) / is a weight. We will only use weights of this type in our discus-

sion. The index ¥ = (01,...,0,) is chosen according to the differential operator in the ellip-
tic/parabolic equation. In particular, for Laplace equation, one chooses ¥ = (1,...,1) and for
heat equation ¥ = (1,2,...,2) where 1 is in the time component.

Remark 17. 1. If Wy, Wy are weights then Wy + sWo, W1 Wy, WE(s > 0) are also weights.
2. The operator W(D) : W p(X, W) — WkP(X) is bounded.

3. Given another weight V(§) < CW (§), by Stein’s criteria (Theorem[5(]) one has a bounded
embedding W*P(X, W) — WkP(X V).

The Sobolev space WHP(X, Wy has a simple definition by density when ¢ | k. Given an
index o = (v, ..., ), note by [|af| :== 37, o =

Theorem 51 (Equivalent norm when o | k). If k > 0 and o | k and 1 < p < oo, then given
u e S*(X), one has

1. uwe WhP(X) if and only if D*u € LP(X) for all ||| < k and the norm 3 j4<p) || Dul| e

is equivalent to ||u||ye.p.

2. w € WP if and only if there exists g, € LP such that u = Y4 <x D*9a and ||ully—rs is
equivalent to

inf{ > lgallr: u= 3 D"‘ga}

[l <k lle| <k
Example 5. 1. When oy =--- =0, =1, one has the familiar Sobolev spaces.

2. For (the weight of) heat equation, W*? can be defined by density using the norm

du
futt o) = |5+ 10uls + 1Dl

where LP stands for LP(X x [0,T)).
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6.2.2 Holomorphic interpolation of Banach spaces

The Interpolation theory is based on the following Three-lines theorem whose proof follows from
the classic Hadamard’s three-lines theorem (the case A = C) and the way we define complex
Banach spaces and holomorphic maps taking value there.

Theorem 52 (Three-lines). Let A be a complex Banach space and h: S ={0 < Rez <1} C
C — A be a holomorphic map, i.e. continuous and holomorphic in the interior such that h is
bounded at infinity, i.e. h(x +1iy) — 0 as y — oco. Let M(x) := sup, ||h(z +dy)| then one has

M(x) < M(1)*M(0)'~*
Let Ag, A1 be complex Banach spaces such that

1. Ay, A; can be continuously embedded into a Hausdorff topological complex vector space
E such that the complex structures are compatible with each others, i.e. the linear
embeddings A; — FE preserve complex structures.

2. The intersection AgN A in E is dense in (4;, ||||4,) for i =0, 1.

such (Ag, A1) is called an interpolatable pair.

The norms of Ag N A; and Ay + A; are defined such that the these spaces are Banach and
the diagram

OHAgﬁAlﬂAo@AlﬂAoﬂ—Al*)O (61)

commutes and the arrows are continuous. By Open mapping theorem, this means that the
norm on Ay N A; is equivalent to ||x]|agna, = ||z]la, + ||#]la, and the norm on Ay + A; is
equivalent to [|z]|ag+a, = infomsgyaraien; {[[2ollao + 2[4, }-
Remark 18. A pair (Ao, A1) of Banach spaces may give different interpolatable pairs depending
how they are embedded into a common space E. It is not difficult to see that the data of inter-

polatable pair is uniquely determined by 2 complex Banach spaces U,V (which are eventually
AN B and A+ B) and the diagram

(6.2)

hhk_\

)
5

0—U—=A DA —=V—0

htbk_\

1
in which
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1. All arrows are continuous and compatible with complex structures. The horizontal se-
quence is exact, the vertical sequence is exact and canonical.

2. The diagonal arrows from U to Ay, Ay are injective and of dense image in Ag, A;.

3. The maps composed by the diagonal arrows U — A; — V' are injective for i = 0,1. Since
the two maps are additive inverse, it suffices to have injectivity for one of them.

In the language that we will use to solve linear equation, these properties of diagram (6.2)
are equivalent to the square

U—— AO
Al e V
being exact.
The following construction will give a family of complex subspace Ay of Ag+ A; containing

AgNA; for 0 < 6 < 1 that interpolates Ay and A; that satisfies the following properties, called
interpolation inequalities

Theorem 53 (Interpolation inequality for elements in the intersection). Let a € Ag N Ay then
a € Ay and
lalla, < 2[lall}, llall’

Theorem 54 (Interpolation inequality for operators). Given interpolatable pairs (Ao, A1) and
By, By), and T a bounded linear operator T : Ay — By and T : Ay — By such that T is
well-defined on AgNAy. Then T extends linearly and continuously toT : Ag+ A — By + B,
that is

0—=ANA —= A A —=Ag+ A ——0 (6.3)
|7 |rer |7
0—=ByNB,—=By® B, ——=By+ B;——=0
Also, T defines a bounded operator T : Ay — By and

1T 2ca0,80) < 21BN, 50 1N Lo, 50)

To define Ay, let

H(Ap, Ay) := {h : S — Ay + Ay ¢ his holomorphic, lim h(z) = 0,h(iy) € Ao, h(1 +1y) € A}

ly|—o00

where, as above, S denotes the strip 0 < Rez < 1. Then H(Ag, A;) is a Banach space with the
norm

1Pllz0,40) := sup [[Aiy) |4, + sup [|R(1L +iy)]la,
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The space Ay is defined set-theoretically as the space of all value in Ay + A; that a function
h € H(Ap, Ay) can take at 6 € [0, 1] € S. Therefore, set-theoretically Ay coincides with Ay and
A; when # = 0 and # = 1. To define the norm on Ay, let

Ko(Ao, A1) := {h € H(Ao, A1) : h(6) = 0}

then Ky(Ap, A1) is a closed complex subspace of the Banach space H(Ap, A1). Then Ay :=
H (Ao, A1)/Ko( Ao, A1) has the natural quotient norm inherited from H(Ap, A;) and is still a
Banach space.

It is not difficult to see that the norm on Ay coincides with the norm || - || 4., || - ||4, When
0=0o0rf=1

Theorem 53| follows from the this lemma when one takes h to be a constant, and is in
Ag N AL

Lemma 55. If h € H(Ag, Ay) then ||h(0)] 4, < 2M? Mg~ where

My = sup [[A(iy)llap, My = sup |A(1+ i),

Proof. The Ag-norm of h(#) only depends on the value of h at 6, one can therefore replace h
by a function of form h..(z) = exp(c(z — 0) + e2?)h(z), then let € — 0 and choose the optimal
¢, which is e¢ = My /M. O

Theorem [54] follows from Theorem [53| and the very definition of quotient norm.
Remark 19. The optimal constant, as given by the proofs, is §7%(1 — )~ < 2

The interest of holomorphic interpolation theory comes from the fact that interpolation of
Sobolev spaces are still Sobolev spaces, which, together with Theorem and Theorem [53]
gives a class of useful inequalities generally called interpolation inequalities.

Theorem 56 (Interpolation of Sobolev spaces). Let p,q € (1,400) and k,l € R and X = R".
Take
Ag = WHP(X), Ay = WH(X)

then Ag = W*"(X) where

1 1 1
0l+ (1 —0)k = s, 0—+(1-0)- =-
q p T
The holomorphic interpolation behaves predictably with direct sum and compact operators

Theorem 57. Let (Ao, A1), (Bo, B1) be interpolatable pairs and denotes by (A @ B)g be the
interpolation of Ag @ By and Ay @& By then one has (A @ B)g = Ay ® By by a canonical
isomorphism.
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Proof. The set-theoretical bijection is easy to see: note that there is a natural inclusion (A &
B)g — Ap® By, which is also a bijection because H(Ay® By, A1 © By) = H(Ao, A1) ®H(By, By).

The most difficult part is to know what we mean by isomorphism. In fact the two norms
(the interpolation norm and the direct-sum norm) do not coincide, but they are equivalent.
One can prove, with basic sup-inf analysis that

1

§|| Nagess < |- Nlaeny, < |- 108

Theorem [57| can be generalised to the following result.

Theorem 58 (*). Let (Xo, X1) and (Yy, Y1) be interpolatable pairs. Suppose that there are
inclusion Xog — Yy and X1 — Y1 with closed images in Yy and Y respectively and the inclusions
agree on Xo N X1 as mappings from XoN Xy to Yy + Yy. Moreover, suppose that the image of
Xo+ X1 in Yo+ Y7 is closed. Then there is a natural inclusion Xy — Yy with closed image in
Yo

Remark 20. 1. The condition Xo + X1 — Yy + Y] being of closed image is redundant if
X — Xg and Yy — Yy, as in the case of interpolation of certain Sobolev spaces on
manifolds. In general, one can also check that this condition holds for the maps vy, and
t,q i Definition |7 of Sobolev spaces using the fact that they admit left-inverse given by
{;}. See Remark|23.

2. If one has two exact sequences

0—X,— Y, —2,—0, i=0,1 (6.4)

whose arrows commute with ones from the intersection and ambient spaces of interpolat-
able pairs (Xo, X1), (Yo, Y1), (Zo, Z1) then, since the images of X; — Y; being kernel of
Y, — Z; are closed, one has the inclusion for interpolation spaces, also of closed image:

0—Xg— Y, 0<0<I1.

3. In particular, if the sequences in (6.4]) split, meaning that one can find a retraction 0 —
Z; — Y;, then by applying the theorem for the retractions, one sees that the interpolation
sequence extend to Zy, i.e.

0—Xog—Yy — Zyp—0
and also splits, meaning Yy = Xo ® Zy. Applying this results to the split-exact sequences

one then obtains Theorem [377.
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Proof. The inclusion Xy < Y} is natural and due to the fact that H(Xo, X1) C H(Yp, Y1). The
equivalence of the interpolation norm Xy and the norm inherited from Yy, on Xy requires more
than a simple sup-inf analysis as in the proof of Theorem since H(Xo, X;) is strictly included
in H(Yo, Y1). What we can say is that the interpolation norm Xy dominates the interpolation
norm of Yjp, since it involves the infimum on the smaller set. In other words, it means that the
inclusion Xy < Yj is continuous. It remains to check that the image of Xy < Y} is closed.

Since

Xy Yy
H(Xo, X1)/Ko(Xo, X1) H(Yo,Y1)/Ko(Yo, Y1)

T T

H(Xo, X1) H(Yo, Y1)

it suffices to show that the image H(Xo, X1) — H (Yo, Y1) is closed, meaning if H(Xo, X;)
hn — h in H(Yy, Y1), then h must take value in X, + X;. This is easy to verify on 9S: By
the equivalence of the norm on X; and the restricted norm from Y;, ¢ = 0,1, one sees that
h(iy) € Xo and h(1 + y) € X;.

Since Xy + X; is closed in Yy + Yj, any holomorphic map H(Yp, Y1) 2 f: S — Yo+ V)
passes holomorphically to the quotient S — (Yo +Y1)/(Xo+ X1). The fact that h takes value
in Xg 4+ X follows from Maximum modulus principle for holomorphic functions. O

Theorem 59 (Interpolation of compact embedding). If Ay — Ay is a compact embedding,
then A1 = AgN A1 — Ay is a compact embedding where the first = denotes the same space with
equivalent norms.

Proof. Tt follows from Theorem [53}
2 = 2nllag < 2z — 20l l2m — 2all%,
Hence if {z,} is a bounded sequence in A;, it converges in A, and therefore Ay. O

The previous Theorem [53] together with Theorem also gives a proof of Kondrachov’s
Theorem, that is the embedding W*?(X) < W'P(X) is compact if k > h >> 0. This follows
from the following 2 remarks

1. The case { = 0 and k > 1 follows from the embedding W*? < C' and Ascoli’s theorem.
Hence by Theorem [53], one has the compactness embedding if £ > 1 and [ < k.

2. For the case of small k, note that

WHEP(X) = WEP(X) : v —s W(D)"u
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is surjective and any u € W*P(X) can be lifted to an element @& € W*"P(X) of the same
norm. In fact, if W (€)*4 € LP then choose @ such that & = W (&)~"4. Kondrachov’s
theorem follows from the diagram:

WHHS(X) = WE2(X)

compact J J

W (X) — T (X)

Remark 21. The advantage of this proof is that it is valid for weighted Sobolev spaces over
manifolds.

6.3 Sobolev spaces on compact manifold without bound-

ary

Let M be a compact manifold without boundary. We fix a finite atlas of M by chart ¢, : M D
U; — V; C R" such that the transitions ¢;; = ¢; o <pj’1 : V; — V; are of strictly positive and
bounded derivatives, i.e. C(a)™t < D%p;; < C(«) for all indices a. We will called such atlas a
good atlas. One can always obtain such atlas by shrinking a bit each chart of a given atlas of
M. Let 1; be a partition of unity subordinated to {U;}

Definition 7. 1. The Sobolev spaces W"P(M) is defined as
WhP(M) = {f € S(M)": (¢if) o ;" € WHP(R™)}

with the norm

£ llweo = DN @if) 0 7 lwneny

2. Weighted Sobolev spaces can be defined when M has a foliation structure, i.e. M is locally
modeled by 0 C Fy C --- C Fy C R" where F; are vector subspace of R" of dimension
0<ng <--- < ng <n respectively and Fy, are preserved by the transition maps ¢;j, for
example when M is a product of manifolds of lower dimension. Then the above definition
extends to weighted Sobolev spaces with weight o1 = -+ = 0p,, Opy41 = =+ = Opy, - .-

O_TL]Q-‘F].:...:O-TL'

Remark 22. 1. One can define S(M)* as the dual space of S(M) = C*°(M) under Schwartz
topology with respect to any metric, because by compactness any two metrics on M are
comparable. The distributions ; f are tempered because they are compactly supported.
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2. One can identify C°(M) with a subspace of S*(M) that is contained in any Sobolev
space WHP(M) by fizing a Riemannian metric g on M. The map C®°(M) — S*(M)
may depend on g, but its image does not. Similarly, one can also identify an element of
WHkP(R™) supported in V; with an element in WP(M).

3. If one uses another good atlas U! or a different partition of unity, one obtains the same
set WEP(M) and an equivalent norm. To see this, let us call two good atlas compatible
if their union is also a good atlas, then the statement holds for two compatible atlas by
comparing their union. Moreover, for any two arbitrary good atlas {U;},{U}}, one can
find a good atlas compatible with both of them by shrinking their union.

By definition, one has an inclusion ¢ : WH*P(M) — @, WEP(R™). Also ¢ is of closed image
because one can find a projection 7 : @, W*?P(R") — WH*P(M) with 7 o = Id. In fact, let
1; be functions supported in U; that equal 1 in the support of v;, then

. QHZ@i-(QO%)

works. The continuity of 7 follows from straight-forward calculations.
The closedness of image of ¢ is equivalent to the fact that W*P(M) is complete.

Remark 23. Although v preserves the norm of W*P(M) and has a right-inverse, it is far from
being an isomorphism (it is not surjective). Each summand of an element in the image of ¢
tends to 0 on the boundary of V; (take k > 1 then everyone is continuous by Sobolev embedding,
there is no subtlety in what we mean by "tends to 0'). [Ham73, page 54] seems to claim that ¢
is an isomorphism and apply Theorem |57 repeatedly to deduce Theorem |56 for Sobolev spaces
on manifold, then the Sobolev embedding W*P — C'(M) and Kondrachov’s theorem.

The above results are true and the correction is not difficult (use Theorem[58).

From the remark, one has

Theorem 60 (Interpolation of Sobolev spaces on manifold). Theorem |56 holds for Sobolev
spaces W*P(M) on compact manifold M.

6.4 Sobolev spaces on compact manifold with boundary

In this part, we will define the Sobolev spaces W*?(M/A) where k € R,p € (1,00) and M is a
manifold with boundary and A is union of connected components of M the boundary of M.
These spaces contain W*P(M) "functions" who vanish on A. The motivation is that we will
later take M = M’ x [0,T] where M’ is a manifold without boundary where we want to solve
heat equation, and the natural A would be M x {0}. We also want that the new definition
coincides with the case of no boundary when A =)
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Suppose that we already define the Sobolev spaces on X x Y where X = R™ and Y™ = Ry,
that is the space W*P(X x Y1) = WFP(X x YT/0) and W*P(X x Y, X x {0}). Then then
we define the space W*P(M/A) in analog of Definition |7| as follows

Definition 8. 1. The Sobolev spaces W*?(M/A) where A is a connected component of
OM is defined as

WhP(M[A) = {f € S(M)": (if) o' € WHP(Ri/ Ay}

where A; = ¢;(U;NA) and R; is the Euclidean space containing o(U;), that is either R™
when A; = 0 or R™ x Rsg when A; C R™ x {0}. The norm is given by

[ fllwer = Z (i f) 0 o7 Hlwna (/i)

2. As before, weighted Sobolev spaces can be defined when M has a foliation structure com-
patible with its boundary.

The fact that different good atlas and different partition of unity defines the same space
WHhP(M/A) (as a subset of S*(M)) with equivalents norm comes from the following lemma,
which is just a formulation of arguments in the case of no boundary. For the proof, one reduces
the lemma, by interpolation inequality, to the case k is a multiple of ¢ and use the criteria in
Theorem [51] and the boundedness of derivative of the transition map.

Lemma 61. Let (U, Ay) and (V, Ay) be subsets of (X x YT, X x{0}) and pyy : (U, Ay) —
(V, Ay) being a diffeomorphism between U and V' mapping Ay C OU to Ay C OV bijectively
and of bounded derivatives. Let 0 < ¢ < 1 be a smooth function compactly supported in V.
Then the linear mapping T : S*(X xY /X x{0}) — S*(X xY*+/Xx{0}): f — ¥.(fopyy)
extends to a bounded operator from WHP(U/Ay) — WHEP(V, Ay).

We will sketch rapidly the (well known) ideas to define Sobolev spaces on half-plan and the
trace operator in the next sections.

6.4.1 Sobolev spaces on half-plan

In this section, the Sobolev spaces on X x Y or X x YT are defined with weight (o1, ..., 0,,p)
and o :=lem(oy,...,0n, p).

Smooth extensions

Let S(X x Y1) denote the space of smooth, rapidly decreasing functions (and all of their
derivatives) on X x Y and S(X xY /0) denotes the subspace of functions who vanish, together
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with all their derivatives, at X x {0}. Similar definition for S(X xY ™) and S(X x Y~ /0). The
following exact sequence is obvious and the arrows are continuous under Schwartz topology.

0—=SXxY /0) ZaS(X x V)-S5 8(X x V) —=0 (6.5)

where Z_ be the extension by 0 and C'; be the cut-off operator.

It is however not obvious that the sequence in splits. Algebraically this is equivalent
to the fact that C'; admits a retraction, that we will note by £ since it is in fact an extension
to the negative half-plan, which is continuous under Schwartz topology. The construction of
E, is as follows

Ey:S(X xY") — S(X xY)

(i [l em)

where the difficult part is the choice of ¢, which is resolved by the following lemma.

Lemma 62. There exists a smooth function ¢ : Rso — R such that [;F> z"|p(z)|dr <
oo Vn €Z and

/0+OO z"p(x)dr = (—=1)" VneZ\ {0}

Moreover, p(=) = —xp(z) for all x > 0.

1
z

In fact, the function

4 o—(a'/ a4 sin(xl/A‘ _ 9071/4)

e
T 1+z

p(z) =

works. The continuity of operator F, comes from these properties of ¢ and basic justifica-
tion of Lebesgue’s Dominated convergence. The projection R_ of Z_ in the sequence (6.5) is
constructed algebraically:
R_S(XxY)— S(X xY)0)
fr—f—ECyf

which is also continuous in Schwartz topology. To resume, one has the split exact sequence

zZ cy
0—=S(XxY/0) ~S(XxY)_ ~S(XxY*)—=0 (6.6)
R_ E,

and a similar sequence for S(X x Y /0 and S(X x Y ) with operators Z,,C_, E_ and R,.
Also, note that

(Evf,9) = ([, Rsg) (6.7)
where the first pairing is on S(X xY)xS(X xY") and the second is on S(X xY 1) xS(X xY*/0).

70/37



ECOLE
POLYTECHNIQUE

UNIVERSITE PARIS-SACLAY

6.4. SOBOLEV SPACES ON COMPACT MANIFOLD WITH BOUNDARY

Remark 24. 1. The two pairings satisfy (D%u,v) = (—1)1*l{u, D).
2. The second pairing gives two natural identifications
S(XxYH/0) = S*(X xYT), S(X xY*)— S(X xY*/0)
while the first pairing gives S(X xY) — S*(X xY).

3. (6.7) shows that Ey and R, are adjoint, strictly speaking E, is the restriction of R,
that is

S(X xY*H) X~ S(X x Y)

e

S (X X Y+ /0) He §*(X x V)

Similarly. since (C_f,g) = (f, Z_g), one has

S(X xY/0) ZsS(X x Y)

L. ]

S(XxY ) —=8S*(X xY)
To resume, one can extend the sequence in (6.5)) to the following diagram

0——=S(X x Y~/0) LS(X x Y) - S(X xY*+) —0 (6.8)

R_ By
cx VAl
0— =S (X xY ) ~8S(XxY)_  SXxY*/0)—=0

E* Ry

We will define Sobolev spaces W*P(X x Y~/0) and W*P(X x Y) so that they form an
intermediate row in diagram. Since the center cell S(X x V) C WEP(X x V) C S*(X x Y) is
already defined, there is only one natural way to do this.

Definition 9. 1. The Sobolev space upper on half-plan is
WRP(X x YVT) = {f €S (X x YT/0): Ige WH(X xY), f = Zig}

with norm || fllwrr(xxy+y = infg ||gllwrrxxy)-

2. The Sobolev space on lower half-plan with vanishing trace
WHP(X x YV7/0) = {f €S (X xV7): C*f e WF(X xV)}

with the induced norm || f|lwrrxxy-/0) = |C* fllwrr(xxy)-
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Remark 25. 1. In other words, WFP(X x Y~/0) = C* " H(W*P(X x Y)) and WFP(X x
Y1) =Z:(WrP(X xY)) and they are given by the induced norm and the quotient norm
of WkP(X x Y) respectively. The operator C* and Z% are by definition bounded under
Sobolev norm.

2. The topology of W*P(X xY') being finer than the induced of weak-* topology from S*(X x
Y'), the restricted operator Z‘T"W}c,p cWEP(X xY) — 8*(X xYT/0) is continuous, hence
ker Z7 wew © WkP(X xY') is a closed subspace of the Banach space W*?P(X xY'). But this
is also the image by C* of W*P(X xY = /0). Therefore WEP(X xY = /0) and WHP(X xYT)
are Banach spaces.

8. Idem for WFP(X x Y*/0) and WkP(X x Y 7).

Theorem 63. 1. Forallk € R and p € (1,00), the three lines of the following diagram are
split-exact and the arrows of the second lines are bounded operators under Sobolev norms.

zZ cy

0—=S8(X x Y~/0) S(X xY+) ——0 (6.9)
R_ By
e o]
0——=WFkP(X x Y~ /0) WEP(X x Y) WhP(X x Y+) —>0
E* R
cr 7
0— =S"(X xY") SHXXY)_ S(XxY'/0)—=0

E* R*.

2. The subspaces S(X x Y ~/0) and S(X x YT) are dense in W*P(X x Y°/0) and W*P(X x
Y*) respectively.

8. Interpolation theorem |56 holds for WP(X x Y= /0) and WHP(X x Y').

Proof. The commutativity of the diagram is purely algebraic. The continuity of C* and Z7%
in the W¥*P_row follows from the definition of norms in this row. The only non-trivial part is
the continuity of £* and R in the WkP_row, and it suffices to prove that C* E* and R ZY
are bounded as automorphism of W#?(X x Y'). This follows from direct computation of these
norm in the case o | k € R and interpolation inequality (Theorem for intermediate k.

Once the continuity of E* and R’ is established, the density of S(X x Y~/0) follows
straight-forwardly and we see that W*?(X x Y~/0) and W'P(X x Y~/0) are interpolatable
(the two spaces share a dense subspace). Theorem |58 applies and shows that Theorem |56/ holds
for W*P(X x Y~/0).

Idem for the side of S(X x Y) Cc WkP(X x YT). O

Remark 26. By dualising the diagram and using the fact that the dual space of W*P(X x
Y) is WP (X xY), one can prove that the dual space of W*P(X xY+) is W=FP (X x Y+ /0).
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Functoriality of D, and equivalent definitions

The following discussion appeared as 4 lemmas in [Ham75|, page 38-42] in the proof of Vanishing
trace theorem [65] I think these ideas can be presented without much computation.

1/20

Note that the weight W (&, n) = (1 + &7 4 oy 772") is comparable to W () +

W (n) where
WE) = (1487 +-+8)" Wy = (149)"”

and also W¥(¢,n) is comparable to W (&)* + W (n)*. Hence W (D,)! : WkP(X x V) —
WHFP(X x Y) is a bounded operator.

The vertical arrows in the following diagram are the vertical arrows of . The dashed
horizontal arrow indicates that it is established only in the center cells W*?(X x V) —
WhIP(X xY).

S — row (6.10)
/ l\\
WHhP — row - — - - W = WHLP — row
S* —row

We will see that the dashed arrow can be extended to a full arrow, that is 3 arrows between
the W*P-row and W*~!P-row that are compatible with the diagram .

One can construct W (D,)" arrows from W*P(X x Y~/0) — WkLP(X x Y~/0) and
WHhP(X x YT) — WFP(X x Y1) as adjoint of W(D,)! on S(X x Y*) and S(X x Y+/0).
They are by definition continuous on the weak-* topology. It is easy to see that if we can prove
that these two W (D,)" arrows commute with C*, E* and Z%, R} on W*P-row and W*"*-row,
then by the continuity of the W(D,)" arrow from W’”’(X X Y) — WkIP(X x Y), these
W(D,)! arrows are bounded in W*? norm.

The two new W (D, )! arrows commute with all '—" arrows in the W*?-row of (6.9)),i.e. C*
and Z7%, since for smooth functions, D, commutes with Z_ (extension by 0) and C (cut-off).

The fact that W (D,)" commutes with the "<—" arrows, i.e. E* and R* is due to:

S(X xY*) o S(X xY) and S(X xY) = S(X x Y~/0)

lW(Dx)l iW(Dx)l J{W(Dz)l lW(Dz)l

S(X xv+) e S(X x V) S(X xY) 5 8(X x Y~ /0)
Remark 27. There is no functoriality of D, since for y <0

DyE:f(w.y) = [ (=N WD f (@, M)A # BL D, f(z,y)

meaning that the D, does not commute with E..
However DLE,f € LP(X xY) if and only if E.D!f € LP(X xY) if and only if D.f €
LP(X x Y1), Moreover the 8 L norms are equivalent.
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The density of S(X x Y~/0) and S(X x YT) in the corresponding W*? shows that the new
WHP spaces can also be defined by density using the W*P-norm of the extension (Z_ and E,
respectively) from half-plan to the whole plan. By the continuity of R’ in the second row of
(6.9) when k& = 0, one sees that the LP-norms of the extensions by Z_ and E, are equivalent
to the LP norm on the half-plan. Therefore, one has the following analog of Theorem [51]

Theorem 64. Given k>0 and o | k,
1. If f € S*(X xYT/0) then

(a) f e WrFP(X x YY) if and only if DYDJf € LP(X x Y') for |[(a, B)|| < k.
(b) f € WkP(X x YT) if and only if there exists gos € LP(X x Y1) such that f =
Zlesli<k Di Dygas:

2. If f € S*(X xYT) then

(a) f e WrP(X xY*/0) if and only if DIDJf € LP(X x Y) for ||(e, B)|| < k.
(b) f € WkP(X x YT/0) if and only if there exists gog € LP(X x YT) such that
f = Zjpyics D3 Dyas-

6.4.2 Trace theorems

To make the notation more intuitive, we abusively denote the horizontal arrows in the W*»-row
and the S*-row by their corresponding arrows in the S-row (i.e. their restriction on the space
of smooth functions), that is we will use Z_,C'y, R_, E instead of C*, Z}, E* R

The goal of this section is to define the restriction of a function f € Wk?(X x Y*) on
X x {0}. The pointwise restriction of f does not make sense because f is only defined up to a
negligible set (i.e. of Lebesgue measure 0). The strategy is to take a sequence f, € S(X x Y)
that is WkP-converging to f and to see if {fn‘XX 0}} converges in LP(X x {0}). If it does one

calls the limit trace of f on X x {0}. Theorem |65, Example [28/and Theorem [67| show that one
should expect

 high regularity of f, i.e. k large enough, so that the limit exists,
o a drop of regularity of the restriction.

From diagram and its opposite version (with all + and — signs interchanged), there
is a natural inclusion ¢ : W"P(X x Y*/0) to W*P(X x YT), by first extending by zero, then
cutting-off

WEP(X x Y+ /0)C ‘ WEP(X x Y)

WhP(X xY)
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Theorem 65 (Vanishing trace). If p € (1,400) and —1 —i—% < pk < % then v is an isomorphic
Proof. Define

M) S(X xYH) — S(X x Y
[, y) — f(z, \y)

Since (M (M) f,g) = (f, Ny(N)g) for all f € S(X xY*),g € S(X x YT/0) and A > 0 where
Ny Ng(z,y) := X tg(x, \"1y), one sees that M, ()\) extends to S*(X x Y/0) — S*(X x
Y*/0) and that one extension of it is NI () the adjoint of N, (A):

S(X x Y)YV _g(x x v

\L\ N*A \L\
o o

S (X xYT/0) —=S*(X xY1/0)

We abusively call Ni(\) by M (X). We will let A — 400, the operator M, ()) intuitively
"shrinks" to the boundary X x {0}.

Lemma 66. For k> 0,A>1, M (\): WEP(X x Yt) — WFP(X x YT) is bounded and

k1
| My () fllweexxy+)y < CXe 7 || fllwerxxyv+)

where C' does not depend on .

The proof of the Lemma [60] is straightforward: it suffices to prove the boundedness in
the case o | k an use interpolation inequality , also one can suppose that f € S(X x
Y*). Note that (%)IM+()\) = )\ZMJF()\)((%)Z while 2 commutes with M, ()), hence in general
|DE, )My (N f] < /\kp/"|Df‘1,7y)f| for all ||a|| < k,A > 1. The —% in the exponent of A is due to:
1M (Ngllze = X7l gl o

Back to Theorem , let f € S(X x Y*) and define M(\)f to be f on X x Y+ and
M_(NC_E,fon XxY~ then M(\)f € Wo/P?(X xY). Note that D,M()\)f is not continuous
at X x {0} but is still in L?(X x Y') because f and M_(A\)C_E, f agrees on X x {0}. Suppose
we can prove that as A — 400 the sequence M()\)f converges to Mf in WhP(X x Y) then
C_M f = limy_40o M_(N)C_E, f = 0. One obtains, by exactness of the second row of diagram
(6:9), existence of a g € W*P(X x Y+ /0) such that M f = Z, g. Moreover, since C, M(\)f = f
for all A > 0, one has C, M f = f, hence 1g = C . Z,g=C . Mf = f.

It remains to prove the existence of such M f. By Lemma [66| and the fact that all M N f
are the same on X x Y', one has

- - ok 1
IMA)f = M) fllwsroxyy < 20072 (| fllwer e+

Therefore if 28 < %, the sequence M(2")f converge in W*?(X x Y) to Mf. O
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Remark 28. If p = 0, = 1 then 0 = 1, take k = 0 then the Theorem @ claims that S(X X
Y1 /0) is dense in LY(X x Y1) D S(X x Y1), or equivalently any smooth function f &
S(X x Y™T) not necessarily vanishes on X x {0} can be LP-approxzimated by smooth functions
with all derivative vanishes on X x {0}. This means that one cannot define any notion of trace
on X x {0} that varies continuously under the LP norm.

In case of high regularity % > %, one can define a meaningful notion of trace.
Theorem 67 (Well-defined trace). If ’;—k > ]% then the restriction map
B:S(X xY") — S(X)
f(@,y) — f(z,0)
extends to a bounded operator, abusively noted by B : W*P(X x Y+) — LP(X).

Definition 10. We call OW"P(X x YT) := W*P(X x Y1)/ ker B the space of boundary
value of function in WHP(X x Y).

Theorem [67)can be strengthen by remarking that if o := lem(o7y, . .., 0y, p) = lem(oy, ..., 0,)
and if W (€) denotes the weight (1 + &7 + - -+ + £290)1/27 then B and W(D,) commute, i.e.

Wkr(X x YT) —E> LP(X) C 8*(X)

W(Dzﬂi iwwm)l
Whtr(X x y+) £ LP(X)

p(k—1)

as long as > %. Therefore, one has

Theorem 68 (Regularity of trace). If0 <1 < k— /;ip then the trace operator B in Theorem@
actually of image in W' (X) and the operator

B: WEP(X xYT) — WH(X)
18 bounded.

Proof of Theorem [67. It suffices to prove that || Bf||rrx) < C|| fllwre(xxy+) for all f € S(X x
Y*)and 1> % > % (for higher k, embed in the W"? smaller k). Define

T,: S(XxY) — S(X xY™)
fr— <(x,y) — i/{)vf(x,y+w)dw>

for v > 0. One can check that T, extends to a bounded operator T, : WkP(X x Y*) —
WHhP(X x Y+) for all k > 0 and that

{HDyvaHLP(XxYﬂ < Co Y| fll e xxy+),s
||Dyva||LP(XxY+) < CHfHW"/PvP(XXYﬂ
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hence by Interpolation inequality Theorem , one obtains for all0 < k < o/p: || DTy fllzr(xxv+) <
CoPM 7| fllwnr(x xy+) hence

1Dy (T2 = To f )|l rxxy+) < OUpk/U_leHWw(Xnyr) (6.11)

Similarly, one can prove that forall 0 < k < o/p: [[(Id=T,) || Lr(x xy+) < Cvpk/"|\f]|wk,p(XXy+)
therefore

1(Tosz = To) fll o sy < CVPM| Fllwn oy +) (6.12)

Moreover, using Holder inequality and Fundamental theorem of calculus, one has: if g €
S(X x YT) then
1/p' 1
1Byl Lex) < C||g||L/PIZX><Y+)||Dyg||L/PZZX><Y+) (6.13)

Substitute g by (75,2 — T,,)f in (6.13) then use apply (6.11)) and (6.12), one has

pk

pk _ 1
|1B(Tos2 = To)lloxy < Cvo 2| fllwnrwxxy+)

Therefore if % < ‘;—k < 1, the sequence BT,-, f converges in LP(X) and the limit is of LP-norm

less than C|| f|lw.s(xxy+). Since f is continuous, the limit is f ‘XX{O}' The theorem follows. []

Remark 29. The fact that the condition on 1 in Theorem[68 is an open condition explains why
we topologize the space of boundary value OWH P(X x Y1) by the quotient W*P-norm instead
of any WhP-norm. Also, we have completeness for free.

In the proof of Theorem [65, we glue a function fy € S(X x YT) with f- € S(X x Y7)
of the same value on X x {0} and the result is a function in W?/#»?(X x Y). This can be
generalised as follow

Theorem 69 (Patching theorem). If p € (1,+00) and 1% < pf <1+ %, then given f, €
WHhP(X x YT) and f- € WFP(X x Y7) such that Bf, = Bf_ in L?(X), one defines f €
LP(XXY) such that f = f1 on XxY* and f = f_ on X xY~. Then actually f € WFP(X xY).

6.4.3 Trace operator on manifold

The following paragraph does not appear in [Ham75] because of Remark .

To resume, we have defined Sobolev spaces on manifold with boundary as the space of
currents whose cut-off restrictions on each chart are in W*P?. Also we have defined trace
operator of Sobolev spaces on half-plan in a vision to extend the notion to manifold.

Let f € WkP(M/A) and B be a connected component of M. With the same notation as
Definition , f gives the data of f; = (Vif) o ;' € WFP(R;/A;) the cut-off restriction of f on
each chart using a partition of unity {v,}; subordinated to a good atlas (U;); of M, where R;
is an Euclidean space of the same dimension as M (A; = (}), or a half-plan (A; C JR;). Note
that U; N B is a good atlas of B and ; is still a partition of unity subordinated to this atlas,
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therefore take g; € W'P(OR;) to be trace of f; on the image of B of each chart. It remains to
check that the data (g;) corresponds to a unique element g € W'?(B). Recall that we have the
following diagram:

. & W'P(dR;)

™

0—— We(B)

where ¢ admits a projection 7 given by the cut-off functions v; that we choose to be the
same ones used for M. Hence to see that (g;); is in the image of ¢, it suffices to check that
to7((g:)i) = (g:); which should be straightforward, since Y-, Uiy = 1.

Now that we defined a trace operator B : W"P(M) — LP(OM) that factor through
WHhP(M) — WHP(OM) for all 0 < 1 < k — 5> We can define the space of boundary value of
function in W*?(M) by

OWH P(M) := W*P(M)/ ker B

which has a finer topology than its image in any W5 (OM) for 0 <1 < k — %.
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Chapter 7

Elliptic and parabolic equations on
compact manifolds

7.1 Commutative diagram and linear PDE. Example:
Semi-elliptic equation on R”

e
i,

Fix a weight (oy,...,0,) on X = R™ and recall that for an index «, we note ||af| := ¥, Za;.

We will consider in this section a partial differential operator A that is heterogeneous, of

constant coefficient and of weight r, i.e.

o pa_(19Y
AD)= Y a,D*, D _<i8x>

lall=r

The symbol of A is A(§) := X a1z @al® and A is called semi-elliptic if A(&) # 0 for all
EeR"\0

Remark 30. If A is semi-elliptic then o | r. In fact choose all §; = 0 except & # 0, one sees
that there must be a non-zero coefficient ai,  roi ), i.e. *2 € Z for alli=1,n. Hence o | r

7777777777 o

(o =lem(o;) being a combination of o;, look at the same combination of "2t ).

It is clear that the operator A : W™P(X) — W™ "P(X) is bounded for all n € R and the
following diagram commutes for every real numbers k < n.

wre(X) A2 yynra( x) (7.1)

] J

whe(x) 22 yhore(x)

Definition 11. Let E, F,G, H be Banach spaces and l,m,p,q are bounded operator such that
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the following diagram (diag:D|) commutes

E—sF (diag:D)
m P
G—1~H
Then (diag:D)) is said to be an exact square if the following associated sequence is exact

0—E-rrpaa™ g9

Example 6. If (A, B) is an interpolatable pair of Banach spaces then

AFJB zj
B A+ B

s exact, where arrows are natural inclusions.

The notion of exact square allows us to reformulate classical results of elliptic equation as
Theorem 70 (Elliptic equation with constant coefficients). The square (7.1) is exact for all
k <n in R. This encodes the following 3 results:

1. me()()cﬂ Wn=P(X) @ WFP(X) s of closed image, i.e. there exists C > 0 such

that
£l < C (IAf lwn-ro) + | Fllwencx))

which is Garding’s inequality.

2. ker ACi =Im A®i, ie. if f € WFP(X) and Af € W™ (X)) then actually f € W"P(X),

which is reqularity theorem.

8. ImA©i=WrF"(X), ie forall g e WTP(X), there exists f € WHP(X) such that
Af —g € W P(X), which is the existence of approximate solution (the idea behind
parametrix)).

A way to prove that a square is exact is to show that it splits

Definition 12. The square (diag:D)) is called split if there exists I, m',p',q" such that

ll

E==F (7.2)

l
m'(m P))p/

G—=H

q
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commutes in 4 ways:

and splits in 4 ways
ZmN N

0 0 D

NX~———

Y

i.e. the sum of two circle in each diagram is the identities.

Theorem 71. 1. A split square is exact. In fact, if a square splits, then the associated short
sequence splits.

2. If E,F,G, H are Hilbert spaces then any exact square splits.

Proof of Theorem [7(] . Since A is semi-elliptic, there exists € > 0 such that |A(£)| > €||&||" for
1€]] := (677 4+ - - +€27)1/27 . Let 4(€) be a radial function in ¢ that is identically 1 for [|£]| < 1
and 0 for ||£]| > 2 and define

Sie el =1
GO =3 "
0, ifgl=1

Then by Stein’s multiplier theorem,

G(D): W™ (X) — W*P(X) Vk R,
Y(D): WP(X) — WHP(X) VE, 1R

are bounded operators. We say that G(D) is an approzimate inverse of A(D) because G(D)A(D) =
A(D)G(D) =1—(D). It is easy to check that ([7.1]) splits:

G(D)
Whe(X) < Whrr(X)

A(D)
w(D)ui iwiﬁ(D)
A(D)

Whe(X) T WP (X)
G(D)

]

The following abstract result shows that solutions of homogeneous equation Af = 0 are
smooth (also proved in the second point of Theorem and the solution space is of finite
dimension.
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Theorem 72. Suppose that the square

E—l.F

no

G—1-H

is exact and m,p are compact operators. Then | and q have closed image, and their kernels and
cokernels are isomorphic through m and p, and are of finite dimensional.

Proof. By basic diagram chasing, one can see that the restriction of m is an isomorphism
ker | — ker q. But m is compact, ker [ = ker ¢ are locally compact, hence of finite dimension.
It is easy to check (with sequential limit) that Im{ is closed in F', since Im({&m) = kerpSq
is closed and m is compact. So cokerl is a Banach space.
Let p" : cokerl = F/I(E) — H/q(G) be the map induced by p to the quotients, note that

we have to take the closure of ¢(G) to ensure that the quotient is Banach. Then p” is obviously

continuous and compact. Also p” is surjective because F' & G LNy -

We will prove that p” is injective. If f € F'\ [(F) then by Hahn-Banach theorem, there
exists a linear functional A € F* such that A\(f) =1 and A({(E£)) = 0. One has

01 P9 g B

and that (I&m)*(A®0) = 0, hence there exists A € H* such that A@0 = (pSq)*N,i.e. Nog=0
and A o p = A\, which means X\ vanishes on ¢(G), hence g(G), and that X (p(f)) = A(f) = 1.

Hence p(f) ¢ q(G) and p” is injective.

The injectivity of p” has 2 consequences. First, it means that coker! = H/q(G) by a compact
operator, hence the two are locally compact and of finite dimension.

Second, it proves that ¢(G) is closed in H. In fact, given h € ¢(G), by surjectivity of
p©q, one has h = pf + qg for f € F and g € G, this means p”(f) = 0 € H/q(G), hence
f =0 € cokerl, i.e. f=1(e) for some e € E. Therefore

h=pel(e) +q(g) = q(m(e) + g) € ¢(G)
and p(G) = p(G) is closed in H. O

Remark 31. The proof of Theorem is much simpler for split squares. We presented the
version for exact squares because we will use it later. The advantage of using exact squares
instead of split square is, as we will see, that among commutative squares, exact squares form
a relatively open set, allowing us to "pertube” an exact square and extend the theory to cover
the case A of variable coefficients.
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7.2 Elliptic equation on half-plan X xY . Boundary con-
ditions.

We will quickly review in this part the ideas to solve elliptic equations with constant coefficients
on half-plan. This does not require any more abstract (i.e. with diagram) results. The main
tasks will be using suitable cut-off function on the frequent space (1) to define the approximate
inverse of an elliptic operator on half-plan that is adapted to the boundary structure and (2)
to approximately inverse the boundary operators.

We will solve elliptic equation on X x Yt where the variables are 1, ..., z, and y, under
weight ¥ = (01,...,0,,p). Recall that A(D) = ¥)(a.8)|=r CapDe D} with symbol A(£,n) =
Ziepyi=r 81

If A(D) is semi-elliptic then for all £ # 0 the polynomial n — A(£,n) has no real zeros,
hence can be factorized to

A(§,m) = AT(§,mA™(&,n)
where AT(&,n) (resp. A~(§,n)) only has zeros n with Imn > 0 (resp. Imn < 0).
Remark 32. 1. By semi-ellipticity, the monomial a,s®n® with biggest 8 has index o = 0.

Hence we can suppose that the leading coefficients, as polynomials in n of A, AT, A~
1.

2. As polynomial inn, AT(£,n) = Xjgaf (§)n° wherem = rp/o and af(€) are S-heterogeneous
of weight (m — [3)p, i.e.

ag (77706, 717, ) = 1P Pa(€)
Also, the coefficients ag are smooth in &.

We will solve the elliptic equation under some suitable boundary conditions. Let B7, 1 <
J < m be m X-heterogeneous boundary operators of weights r;, i.e.

BI(D)= Y. b,D:DJ
[l (e, 8)I=r;
of symbol

Bi&m) = Y b= 3 v
(@B l=r (B ll=r;

where b}; are heterogeneous in ¢ (actually polynomials) and of weight r; — 5.
As our discussion on trace operator, if k£ > r; + ﬁ then B7 extends to a bounded operator

WhP(X x Y OWH=rip(X ) WP(X)

\/

Wk‘ TJPXXYJ'_
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fora110§l<n—7“j—;’—p.

Definition 13. We will say that the operators Bf = (B'f,..., B™f) satisfy the complemen-
tary boundary condition (CBC) if the

det (] ()) £0 VEeR™\ {0}

where c};(ﬁ) are the cofficients of the remanders C7(&,n) when one divides B (£,n) by AT (&,n)
as polynomials in n, i.e.

B(&n) =CY(En) mod A*(¢,7)

HMS

Approximate inverse of boundary operator B. The CBC condition allows us to approx-
imately inverse boundary operator B.

Theorem 73 (Approximate inverse of B). Let B : S(X x Y1) — S(X)®™ be a boundary
operator that satisfies CBC' condition, then there exists an operator

H:S(X)™" — S(X x V')
(hl,...,hm) '—)H1h1—|—+Hmhm

such that
1. (1d — BH)h = $(D,)h for all h € S(X)&m
2. (Id—=HB)f =¢(D,)f forall f € ker A(D) : S(X xYT) — S(X x Y7).

where (&) is the radial smooth cut-off function in & that equals 1 when ||€|| < 1 and 0 when
13 =
Moreover, if k > r;+ = then the operators H; : S(X) — S(X X Y) extends to a bounded

operator
H.

J

OW" TP (X) — WFP(X x YT)

Sketch of proof. We define H; : S(X) — S(X x Y) by its action on the frequent space of
X, in particular, set

where f is the partial (in ) Fourier transform of f and H;(€,y) is given by

Hy(&y) = (1=%(9)) | Z “”’dn

where I' C C is a curve enclosing all zeros of A(§,n) with Imn > 0, (€5(€))a,; is the inverse
matrix of (c5(¢));,s and AL(€,m) = 555" aly g (En”. O
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Some auxilary functions. We cannot use the operator G as in the case of whole plan as
an inverse of A on the half-plan X x YT, since we only have access to the frequent space of
X. However we can modify the cut-off function to create an approximate inverse of A on the
half-plan.

Let ¢ : Rsg — R be the function that we used in the definition of £, i.e.

64 e_(ll/4+$_l/4) Sln($1/4 — l'_l/4)
= . ) >0

with the properties [;° 2"p(z)dx = (—1)" for all n € Z\ {0} and [5° p(z)dx = 0. Extending ¢
by 0 for z < 0, one still has a smooth function. Define x(y) := —p(—y — 1), then x € S(Y),
with support in (—oo, —1] and

In the frequent space of Y, this means {(0) = 1 and DFg(0) = 0, i.e. 1 — X(n) has a zero of
infinite order at n = 0.
Also, since x = 0 when y > —1, the convolution

fr=X(Dy)f=xx*f
maps S(Y~/0) to itself, hence induces a mapping from S(Y ™) to itself, since

0—=SY/0)—=8(Y)—>S(Y*) —=0

(given any f € S(Y1), any extension f of f to S(Y) has the same restriction of X(Dy)f on
Y.
Let w(&,n) :=¥(§)x(n) then w defines an operator

w(D): S(X xY1) — S(X xYT)
In fact, for all k,l € R, there exists C' > 0 such that

[w(D) fllwrrxxy+) < Cllfllwerxxy+)-

Approximate inverse of elliptic operator A on half-plan. The auxilary function w will
play the role of ¢ in the whole plan case.

Theorem 74 (Approximate inverse of A on X x Y1). There exists an operator G : S(X X
Y*) — S(X x YT) such that:

1. (Id — AG) = w(D)
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2. For all k,l € R, there exists C > 0 such that for all f € S(X x Y1)
1(Id — GAYP(Do) lwro(x v+ < Cll Fllwerx v+

Also G extends to a bounded operator G : WF™P(X x Y ) — WHFP(X x YT) for all k € R.
Sketch of proof. In fact G is defined as follows:

Go(&,m) = 71 1_4(12(%)77)

which is smooth at (0,0), where 1 —w has a zero of infinite order. Then Go(D) : S(X xY) —
S(X x Y) extends to WETP(X x V) — WFP(X x Y). Finally, take G = C,GE, which
maps S(X x Y1) — S(X x Y1) by first extending a function to the whole plan, applying Gy
and finally cutting-off. m

Approximate inverse of the combined operator. Let C be the combined operator:

C:S(XxYT) — S(X xYH)aSX)™™
fr— (Af,Bf)

and define the operator J as

J :S(XxYHaSX)*" — S(X xY™)
(9,h) — Gg+ H(h — BGy)

then one can prove with straightforward computation that J is an approximate inverse of C.

Theorem 75 (Approximate inverse of C). For smooth functions f € S(X x Y ') and (g, h) €
S(X xYT)® S(X)®™, one has

1. (Id=CJ)(g,h) = (w(D)g,¥(D.)(h — BGg)) =: (g, h)
2. (Id—=JC)f =(D,) (Id = GA)f + (Id = HB — (D,)) w(D) f =: u(f)

Since G, H extend to Sobolev spaces, one also has

J: WX x Y)Y PoOWr"P(X) — WHP(X x YT)

J=1

o
whenever k > o + max; ;.
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Theorem 76. In analogue of Theorem[70, one has the following exact-split square

J
WHEP(X x Y+) == WETP(X x Y*) @, OWFTar(X) (7.3)

dl! 1)
WE(X x YF) =S WP (X x YH) @, oWTi7(X)
J

forallk > 1 > % + max; r;.

7.3 From local to global.

7.3.1 Pertubation of exact squares and consequences.

We will extend the result of Theorem (exactness of heterogeneous elliptic operator with
constant coefficient on Euclidean plan) in 2 levels: (1) for general elliptic operators (non-
heterogeneous and with variable coefficients) and (2) for such operators on compact manifold
(with boundary if needed). These 2 generalizations will be done using the same technique:
"cube by cube" approximating an exact square.

We topologize the space of commutative squares F —L. F asaclosed subspace SQ(FE, F,G, H)

o
G—1-H
of L(E,F) x L(F,H) x L(E,G) x L(G, H) defined by the equation gom =pol.

Theorem 77. In SQ(E, F,G, H), the exact squares form an open set.

Instead of giving a proof (see [HamT75l, page 75-77]), let us explain why Theorem [77|is true.
The commutativity already tells us that the composition of any two consecutive arrows in

0—E-“rpeaal.og_ .

is 0, and exactness is an extra condition of type "maximal rank", which is an open condition
(For matrices, this means the derterminant does not vanish. The analogous phenomenon for
Banach spaces is that a linear map sufficiently close to an invertible one is also invertible).

We will distinguish the following 2 types of cubes that we will use to cover a manifold. We
will call the following set an interior cube

B := {(xl,...,a:n) | < €, < ea/"”}
and the following an boundary cube
Bt = {(xl, T y) | S €T | < €0 <y < e"/p}

€
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For the second type, we note by 9y the part y = 0 of the boundary of B,
remaining part.

We will say that the A := <, aa(z)D? is semi-elliptic at 0 if Ay := 342 @a(0)D”
is a semi-elliptic operator.

and by 0, the

Proposition 78 (Approximate operator on interior cube). Suppose that A := Y2, <, a(x)D*
is defined in B, and A is semi-elliptic at v = 0. Fiz —oo <l < k < 4+00. Then there exists an
€ > 0 sufficiently small and an operator A" = Dllafl<r a? (z)D* with smooth coefficients defined

on X such that
A A, inside B,
Ag, outside Bo,
and the "k,1" square corresponding to A%, i.e.
WP (X) A5 Whrp (X)

L L

Whe(X) —25 Wire (X)
15 exact.

An analoguous result holds for boundary problem. The setup for boundary problem on
half-plan X x Y is as follows.

A= Z aawg(:v,y)Dg‘Dg
[l (c.B)]I<r

B’ = Z %,5($79)D§D57 J=1m
| (c.8)lI<r;

are operators with smooth coefficients on B} and

Aji= > aap(0,0DsD)

(e, B)||=r
By= Y biﬁ(O,O)Dg‘Dy’B, j=T1,m
(B ll=r;

If A is semi-elliptic at 0 then we say that {B7} satisfy the CBC condition at 0 uf {B}} are
CBC with respect to Ag. Note that this is an "open condition', i.e. if the condition is satisfied
at (0,0) then it is also satisfied in a neighborhood of (0,0) in X x {0}. The analoguous result
for boundary problem can then be stated.

Proposition 79 (Approximate opearator on boundary cube). Under the previous setup and
with ,;ip +max;r; <l < k < +oo, for e > 0 sufficiently small, there exists operators C# =
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(A# B#) with smooth coefficient in X x Y agreeing with (A, B) in BX and with (A, Bo)
outside of By, such that the square

WEP(X x V) Lo Wh=ro(X x V) @7, OWhE—m0(X)

W (X X YF) — = WI2(X 5 V) @, OW'7(X)

s exact.

We will prove Proposition [78 here to demonstrate how Theorem [77] is employed. Another
reason is that the corresponding proof in [Ham75| is not very readable due to a notation/printing
issue.

Proof of Proposition[78 We will use the change of coordinates #; = A~°/%x;, which gives a
diffeomorphism hy from B, to B, in which the derivative operators are

o\" o\" ~
_ )\aia/ai s De = )\||o¢||Da
(os) = ().

%

The operator A, viewed in hy, i.e. the operator f +— A(fohy), is 3j4)<r a7 )Nl Do
We pose

A= > Ar=lellg, (Ao/7i ) D
llafl<r
Ag = a,(0)D”

lledll=r

Ay = (@) Ay + (1 — (@) Ag

where ¢ is radial in Z, equals 1 for ||Z|| <1 and 0 for ||Z|| > 2.
The coefficient before D* of A% is A"l [cp(:i)aa()\"/‘”fi) +(1— @(i‘))aa(O)é”a”:r} is the
same as that of Ay for # outside of By and C%-converges to that of A, inside B;. Hence for

\ sufficiently small the corresponding "k, 1" diagram of A% is exact, hence so is the diagram of
A" A%, Choose € = A and A# to be A" A% viewed in X through h\. O

Remark 33. To avoid making infinite intersection of open sets, we have to fix k and | first
in Proposition |78 and Proposition . The approzimate operators A%, B¥ and the size € of the
cube therefore depend on k, 1, but this dependence will not be a trouble when we pass from local
to global situation.

The exactness of semi-elliptic operator with variable coefficients on manifold will be establish
analytically, meaning through the 3 statements similar to those of Theorem [70] Proposition
and [79] can be applied to prove the the local version of these statements.
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Lemma 80. With the same € and k,l as Proposition[7§ and the extra condition that 1 >k —1,
one has for all) < § <€

Lo fllwersyy <€ (||Af’|wkfr»p(35) + ||fHWl»P(Be)) for all f € W*(B,).
2. If f e W'P(B,) and Af € WkP(B,) then f € W*P(Bjs).
8. If g € WP(Bs/d) then there exists f € W'P(B,, d) such that

g—Af e WFTP(B,,0B,).

Proof. Let 1 be a cut-off function that equals 1 on Bs and 0 outside of B, and A% be the
differential operator on X with exact "k,[" diagram given by Proposition [7§ which equals A on
B.. The idea of the remaining computation is to use the exactness of A# on 1 f and the reason
for which the local-global passage is not trivial is that the operator A# and the multiplication
by 1 do not commute. The commutator [A#, )], however, is of weight at least 1 less than A
and with the choice [ > k — 1 the norm ||[¢, A%] f||wr-rs(x) is dominated by || f]|yes.

1. If f € W*P(B,) then v f € W*P(B,, 0) and

[ fllwrrssy < U fllwrwxy < C <||A#waW’C*W(X) + H¢f||wlm(X))
< C (|0 A* fllws-rog) + 18, A¥)flws-rog) + 16F o)
< ' (IIAf lwi-roes + 1 fllwens,)

2. Given f € W'"(B,) and Af € W*™P(B,), one has ¢f € W'(X). Also, [A%,¢]f €
Wirtbe(X) ¢ W P(X) and v A% f = o Af € WETP(X), therefore A% (1 f) € WrFP(X).
By exactness of A#, one has ¢ f € W*"(X), so f € W*"(Bj).

3. If g € W"P(Bs/d) € WETP(X), by exactness of A# we can find f € W'?(X) such that
g— A#*f € W+P(X). Choose f = f € W'?(B,/d) then

g—Af =g—A*Wf) = (g — A*[) + [, A¥]f e WFTP(B,)
since (g — A#f) € WEP(B,) and [, A#]f € W=t1P(B,) € W*"P(B,).
O

Lemma 81. With (A, B) and €, k,l as in Proposition with the extra condition | > k — 1,
then for all § < €, one has

1. ||f||Wk,p(BgL) <C (HAJCHWk—np(Bj) + Z;‘nzl ||ij||awk—Tj’P(aij) + ||f||Wl,p(Bj)) Jor all [ €
Whe(BF).
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2. If f € W?(BF) and Af € WFP(BY) and B’ f € OW*"i?(0y,BY) then actually f €
Wkp(B).

8. If g € WrP(BY /0.) and hy € OW'=iP(9y By /0) then there exists f € W'P(BX, 0,) with
g—Af e WP(B},0.), hj— Bf € oW TiP(9yBF/0).

The generalisation of Theorem [70] on manifold with variable coefficients is now straightfor-
ward. The only nontrivial issue is the definition of semi-elliptic operator A on manifold. This
requires a Riemannian metric g and ellipticity is naturally defined at every point, viewed in a
chart, as we did before. But this only defines the action of A on C*°(M) (or C"(M) if regularity
is important), but not on W*?(M/A) where A C OM is a connected component.

The action of a differential operator A can be defined to be component-wise on W*?(M/A) —
@®; WkP(R;/A;) where R; is an Euclidean plan or a half-plan and A; the corresponding bound-
ary part, i.e.

WH (M| A) —> @, WEP (R A;)
. s
v
W (M/A) —= @, W' (R;, A;)
It remains to check that the component-wise operation of A maps an element in the image on
WHkP(M/A) to an element in the image of W%P(M/A). This can be done using the projection

as we did when defining trace operator on manifold, but the situation is much simpler here
since we can differentiate directly an element in S*(M).

Theorem 82 (Elliptic equation on manifold). Let M be a compact manifold possibly with
boundary (and a compatible foliation if the weight is not uniform). Let A be a general semi-
elliptic operator of weight r, of variable coefficients and {B’}; be a set boundary operators of
weight r; satisfying CBC with respect to A. Then for all [jip +max;r; <[l <k < +4oo, the
square

WP (M) —Ss W2 (M) @7, OW 732 (OM)

Whe (M) — Wi=re(M) i oW (M)
is exact where C = (A, BY).
Proof. We can suppose [ > k — 1, the general case follows using

Lemma 83. If the two following squares are exact

E—1tsF, G—1-

J b z

t
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then
E—-LsF
rm iSp
s exact.

Now covering M by finitely many charts of type Bs C B, and Bf C B such that the
interior of B; and of By cover M. Also, choose a partition of unity 3t = 1 subordinated
to B; and By. The exactness will be established if we can prove the analogue of the 2 last
statements of Theorem

For the regularity statement: If f € W'P(M), Af € W*P(M) and B/ f € W*="iP(OM)
then the same holds for ¢ f in B, and B since

[A, ) f e WErtbe c Wh=rP o[BI ] f € oWt C gwkTp

Therefore ¢ f € WH5P(Bs) or WkP(B{) hence f € WhP(M).
For the approximation: If g € W'""P(M) and h; € OW'="P(OM) then g € W'="P(B;/0)

or Wi=rP(Bf/0,) and h; € OW'"P(9yBy /0). Then by Lemma , we can find f €
W' (B,/0) with g — Af € W*P(B./9d) or in a boundary cube f € W (B*/d.) with
g — Af € WFP(BF/9,) with oh; — B f € OW*7i#(9yBF /D). Then f := Y f makes sense
g—Af=X(bg—Af)  isin WHrP(M)

and satisfies ~

O
h—Bif =Y (ph; — Bif) isin OWE"2(0M)

7.3.2 Consequences of Theorem .

Under the same setup as Theorem [82] one has

Theorem 84 (Regularity of kernel and cokernel). The map C = (A, B) : WkP(M) —
Wh=rP(M) @7, OW*~"P(OM) has closed range, finite dimensional kernel and cokernel and

the kernel and cokernel are independent of k in the sense of Theorem [73.  In particular,
ker C C C*(M)

The analoguous regularity for cokernel is less straightforward. We resume here the result.

Theorem 85 (Regularity of cokernel). If r > maxr; then the image of C can be represented
by finitely many linear relations: (g,h) € ImC if and only if it satisfies finitely many equations
of type:

(9, 7)m + Z<hja njYom =0
=

with v € C®(M) and n; € C(0M).
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If maxr; —r = k > 0 then for all g € Wkr=rP(M), the normal derivatives % are well
defined if % < k. The cokernel is then given by the relations

8 m
(g + D, <87Vgi7Xi>8M +> (hj.njYom =0

ai/p<k J=1

with v € C*(M), x; € C*(0OM), n; € C*(0M).

7.4 Parabolic equation on manifold.

7.4.1 Parabolicity and local results.

Definition 14. The constant coefficient differential operator A(Dy, Dy) = 3 (a.8)|<r aang‘Df
is called parabolic if its symbol A(E,0) == ¥ (s |=r CapE*0° has no zero when & € R and
Im6 <0 except £ =6 =0.

Example 7. Toke A= 0, — 0; — 0, — 02 = iD; + D2 + D + D2, the symbol is 10 + 3 &7 has
no zero & € R3 Im@ < 0 except 0. Generally, the operator 0; + A(D,:) is parabolic if A is an
elliptic operator with the symbol A(§) > 0 for all £ € R with equality only at & = 0.

Remark 34. 1. If o = lem(oy,...,0,) is the lem of weights of variable x; and T is the
weight of t, then parabolicity implies 27 | o. Therefore if the weights of x; are uniform,
one can suppose that T = 1.

2. Parabolicity implies ellipticity.

Similarly to the elliptic case, we attempt to define an approximate inverse G of A, of the

form

G(&0) = (1 —(&0)) /AL, 0)
such that G(D,, D;) : WkP(X x TT/0) — WH"P(X x T*/0) and (D,, D) : WFP(X x
T+/0) — WFP(X x T+)/0) for all k,l € R.

The sufficient condition for this is that (&, 6) = ¥ (£)x(0) where ¢ is compactly support
and X € S(T') with x—1 having a zero of infinite order at # = 0, and X extends to a holomorphic
function in Im# < 0. The function y used in section suffices. We then have the following
exact square

G
WHEP(X x T+ /0) == Wh=r(X x T*/0)

a |

Whe(X x T /0) —2= WEre(X x T)0)
G
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The theory in section also allows us to treat spatial boundary condition, that is, to
replace the Euclidean plan X by the half-plan X x Y. The analog of CBC condition for
boundary operators

B/(D,,D,, D)= Y I

aBy
ll(c,8,7)I<r;

DeDID}

is that the symbols
B(&n0) = > 0’0
ll (.8 M) ll=r;
are linearly independent modulo A" (£, 7,0) as polynomial in 7 for all ¢ € R™ and for all
Im 6@ < 0 except when £ = 6 = 0. In that case we have the exactness of

WHEP(X x YT x T*/0) “wh) WHETP(X x YT < T /0) @)L, oW TP(X x T )0)

L L

W (X x YV x T+ )0) SELWierao(X 5 v+ x T+ /0) @, oW (X x T+ 0)

7.4.2 Global results and causality.

We will use the following setup. Let M be a compact manifold (possibly with boundary), of the
form N x [a,w] 3 (x,t). The global product gives a foliation that allows us to set the spatial
weight to be uniformly ¢ and the temporal weight to be 7. The boundary of M has 3 parts:
OuM = N x o, 9,M := N x w and OsM := ON X [, w].

Let A be a parabolic operator, meaning that A is parabolic at every point and B7,j = T,m
be a set of boundary operator satisfying CBC condition at every point on dsM. We take into
account the initial condition by only considering the space W*?(M/9,) of function vanishing
before time ¢t = a.. As before the operator

C o= (A BY) : WHP(M/D,) —s WET2(M/0,) @D OWH2(9s M 0,)

j=1

has closed range, finite dimensional kernel and cokernel which are independent of & > %—i—max T
The same method allows us to conclude that kerC C C*°(M) and the cokernel is given by
finitely many linear relations of type

0
(9,70 + D _(hj,mi)om + Z(wg, Xi)ogM
J 7

where v € C*(M/0,), xi € C*(0sM/0,,) and n; € C*(dsM/0,).
The difference with elliptic equation is that the kernel and cokernel of C are not only of
finite dimension, but are zero.
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Theorem 86 (Causality). With the previous setup, the operator C = (A, B?) defines an iso-
morphism
WP (M [8,) —S> WHTP(M/0,) @y OWH "32(0s M/,

for all k > ]% +max; r;, and therefore an isomorphism
C(M[8,) —S= C=(M/0,) B, C=(dsM/d,)

Proof. Let 8 <~ be real numbers in [«, w| and let ker(3,~) and coker(/3,v) be the kernel and
cokernel of operator C on N X [3,v] with vanishing initial condition at 8. Since dim ker(/3,~)
and dim coker(f, ) are integer-valued, using the fact that dim ker(/3,w) is decreasing in § and
dim coker(c,y) is increasing in 7, one can easily check that it suffices to show that the two
functions are continuous in (3,7) to prove that they are identically 0.

The following statements can be verified mechanically:

1. Monotonicity: dimker(5, ) is decreasing in 3, dim coker(f, ) is increasing in +.

2. One-sided continuity: dimker(3, ) is left-continuous in /3, dim coker(/3, ) is right-continuous

in +.
3. One-sided semi-continuity: dimker(f3,) is left upper semi-continuous in 7, i.e.

lim inf dimker(3,7;) > dim ker(3,y2)

1Yy

This is due to the left-continuity in first variable of dim ker and the exact sequence
0 — ker(v1,72) — ker(f,72) — ker(8, 1)
where the last arrow is the restriction. Similar statement for coker:

lim diminf coker((y,~) > dim coker (3, y)

Ba—B;+

This 3 statements suffice to finish the proof in the case where boundary conditions B’ on
0sM are of constant coefficients since ker, coker only depend on the difference v — 3, up to a
translation in time of the solutions.

In case B7 are of variable coefficients, the idea of making translation in time can be formu-
lated using Index theory for Fredholm maps:

We recall that Fredholm maps between Banach spaces E, F' are those in L(FE, F') with closed
image and finite dimensional kernel and cokernel. It is a classical result that

1. The set F of Fredholm maps are open in L(E, F').

2. The index i(l) := dim ker ! — dim coker [ is continuous in F.
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The difference dim ker(/3,~) — dim coker(/3,y) can be regarded as the index of a continuous
family C(s ) of operators on the same space N x [0, 1] using the diffeomorphism

N x [0,1] = N x [8,7].

Hence dim ker (3, v) —dim coker(, 7) is constant. It follows that dim ker(3, 7) is both increasing
and one-sided semi-continuous in v hence is right-continuous in 7, hence dim coker(,) is
continuous in . Other continuities follows similarly. m

Remark 35. To take into account the initial condition f ‘ = fa Smooth, one looks for solution
of the form f = fy+ fu where fy satisfies the initial condition and fu € WEP(N X [, w]/a)
satisfying a parabolic equation (Afy, B’ f) = (g,h) where g,h and the coefficients of A and B?
depend smoothly on fy, and therefore still C* in (x,t).

7.4.3 Regularisation effect and Garding inequality.

With the same technique used for elliptic equation, one can also prove regularity result for
parabolic equation. There are 2 different points, in comparison with the elliptic case:

1. There is a regularisation effect of parabolic equation: An arbitrarily weak estimate in
the past gives an arbitrarily strong estimate in the future. We will see that this is in
fact a consequence of the causality of parabolic equation (Theorem and Kondrachov’s
theorem.

2. The temporal boundary condition is thicken: We will look at the norm on N X [a, 7]
rather than the restriction to 0, M.

Theorem 87 (Regularity and Garding inequality). Under the same setup and notation as
Section let pe (1,400) and k > 1 > % +maxr;. We denote by W*P([3,7]) the Sobolev
space WHP(N x [8,7]). Suppose that

few(a,w)), Af e W(ja,w]),  Bf € oW ([, w])

then f € WkP([r,w]) for all m € (a,w). Also, for all ' > —o0, there exists a constant C' > 0
such that

||f||kap([7r,w]) <C (HAJCHW’ﬂ—T»P([aM]) + ||ij||awk—Tj~P([a,w}) + ||f||wl’,p([am])> .

In particular, for homogeneous equation, i.e. Af = 0,B7f = 0, the solution is C* and an
arbitrarily weak estimate in the past gives an arbitrarily strong estimate in the future.

Proof. Let us explain why the theorem is true in the case of no spatial boundary ON = .
In this case, there is no distinction between [ and I’. Consider A as an elliptic operator on
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N x [7,w] with 7 = % and with no boundary operator, one has the following exact diagram:

Whe ([, w]) == W2 ([, w])

|

Whe([7, w]) —> W([7, w])

Therefore the if f € W'P([o,w]) and Af € W*P([a, w])then f € WHFP([7,w]) C WFP([7r,w])
and

[ lwee (e < I llweegaw) < C (HAf”W’“*TvP([oc,w]) + ||f||Wl*p([a,w})) (7.4)
<C (||Af||wk—w([a,w]) + | fllwr o) + ||f||Wl»P([ﬁ-,w})) (7.5)

It remains to check that we can get rid of the || f||ywts((7 ) term on the right hand side. Suppose
not, then there exists a sequence {f;} C W' ([a,w]) such that Af; — 0 in W*"?([a, w]) and
fi = 0 in Whe([a,7]) but || fillwis(zwy = 1. Then by (7.5), {fi} is a bounded sequence in
WHP([%,w]) and, by Kondrachov’s theorem, can be supposed to converge in WhP([#,w]) to a
function f which has || f lwir(zwy = 1 and A f = 0 on [#,w] because A commutes with the
restriction. Moreover, since || fillwre(a,-) — 0, one has f € Whe([#,w]/7) and the fact that
f # 0 contradicts Theorem . m

Remark 36. The proof of Theorem in the general case, with spatial boundary taken into
account requires the notion of bigraded Sobolev spaces on half-plan, see [Ham7, page 97-100].
This is also how the regularity result for cokernel of elliptic operator, Theorem [85], is proved.

7.5 Example: Linear heat equation.

We use the same setup of M, N, o, w as Section Let A be the (geometer’s) Laplacian

y 0? 0
—Af = g" () <8xi<9frvj - FZ(x)&j’“)

It is easy to check that A is an elliptic operator with symbol A > 0 (there is a factor ¢ when

9 to D,:). Hence on M = N x [a, w] the operator % + A is parabolic.

passing from 37

7.5.1 Linear system.
We will look at the linear parabolic system of equations for F' = (f!,...  f"): M — R™

%]Z+AF+aVF+bF:G (7.6)
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where in local coordinates (aVF)* = agi%’;f and (bF)* = b5f° and (AF)* = Af and the
coefficients af* and bg are smooth.

We will say that a function F' = (f',...,f") : M — R™ of class W*? if it is Wk
component-wise. We also denote abusively by W*?(M) the direct sum W"?(M)®" where F
belongs to.

Theorem 88 (Linear heat equation). Let p > dimM + 1 = dim N + 2 and k > 0, then for
all G € WFP(N x [a,w]/a), there exists a unique F € WF2P(N x [a,w]/a) that solves (7.6)).

Moreover, the operator

F|—>aaf+AF+aVF+bF

is an isomorphism between Banach spaces W*2P(N x [a,w]/a) — WEP(N x [a,w]/a).
Proof. Note that

H: WF2P(N x [, w]/a) — WFP(N x [a,w]/a)
oF

F — + AF
r—)at—f-

is a direct sum of parabolic operators in each component, and hence an isomorphism, and

K : WF2P(N x [a,w]/a) — WPP(N x [a,w]/a)
F+— aVF 4+ bF

is a compact operator because it factors through W**1(N x [a,w]/a). Therefore H + K is a
Fredholm map with the same index as H, which is 0. It is sufficient to check that the kernel of
H + K is trivial.

Suppose that F' = (f!,...,d") € ker(H + K) then f* € W??(N x [a,w]/a), so f* and %J;

are continuous function on N X [, w]. Since

afoz o oaiafﬂ
o TR g

by repeated use of Theorem [87|the f¢ are smooth for ¢ > «.

Let ¢ := $|F|> := £ 3, | fal?, then e is continuous on N x [a, w], vanishes on N x {a} and

51,

one has

de ai ro
%:—Ae—]VFP—an

afﬁ a ra B
op sl

< —Ae+ ;C’|F!2 = —Ae+Ce

where we used the inequality —u? —2uv < v? to bound the second and third terms. We conclude
that F' = 0 since e = 0 by the following Maximum principle. O]
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7.5. EXAMPLE: LINEAR HEAT EQUATION.

7.5.2 Maximum principle and L*°-Comparison theorem.

With the same proof as for open set in R", one has the maximum principle for parabolic
equation on manifolds. The constant C' in the following Theorem [89] can depend on the point
x € M, but will be most of the time globally constant, since the manifold M is compact. The
following statement of Maximum principle will be sufficient for most of our application.

Theorem 89 (Maximum principle). Let f : M — R be a continuous function on M =
N x o, w] with f’a o <0 and f‘a u < 0. Suppose that whenever f > 0, f is smooth satisfies
o S

of
5 S A0S

Then in fact f < 0.
With the same proof as Theorem [89] one can prove the following L> Comparison theorem.

Theorem 90 (L*-Comparison theorem). Let f : M = N X [o,w] — R be a continuous
function on M, smooth for time t > 0 such that

df

%:—Af—l—an—l—bf on N X (o, w] (7.7)
where a is a smooth vector field and b is a smooth function on N. Then there exists B = B(a,b)
depending only on a and b such that

1£| e < P f| o

Proof. We can suppose b < —1 and prove that ||f| @, a) < || f||Le@.r)- Intuitively, this
means that since heat spreads out, the largest density must be attained at time ¢ = «. In fact,
choose B = maxy; b+ 1 and define f = fe~5(=%) then ||Jz:’o[||1:oo = ||f‘a||L00 and HﬂwHLoo =
e Bl f ) || The function f satisfies the same heat equation as f, with b replaced
by b— B < —1.

Now let us prove that under this supposition, |f| attains it maximum at time ¢ = «. Since
we can replace the solution f of by —f, we can suppose, for sake of contradiction, that
|f| attains it maximum on N X [a,w] at (z*,t*) with |f(2*,t*)| = f(z*,¢*) > 0 and t* > .
Then one has

Vf(z*,t*) =0,
4 (z*,#*) > 0, (this is not true if t* = «)
Af(z,t7) =0,
flz*,t*) >0
Plugging these in , one has a contradiction. O]
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7.5.3 Backwards heat equation and L!'-Comparison theorem.

We will use backwards heat equation, which is just heat equation with the reversed sense of
time (so with the reversed sign for A as well), in order to dualise the estimate of Theorem
and obtain a L' estimate of f at time t = w in term of its L' norm at t = «. In particular, we
prove the following theorem.

Theorem 91 (L'-comparison theorem). Let a be a smooth, divergence-free vector field on a
Riemannian manifold N and b be a smooth function on N.Let f : N X [a,w] — R be a
continuous function on M such that

?;:—Af+an—|—bf on N x (o, w]. (7.8)

Then there ezists B = B(a,b) depending only on a and b such that

1|l < P ] Yl

Proof. Since L' is the dual space of L™, it is sufficient to prove that for all h € C*°(N), one

has
/ fh < eB(w—a)
Nx{w}

‘ _ ‘fft’—Ag—an—bg, on N X [o,w
Consider the backwards heat equation ‘ h
g, =n,

a heat equation on N X [o, w] with initial condition at « if we pose §(t) := g(w + « — t). The

o AR Lo
which is just

solution ¢ exists and is smooth on N X [, w]. One has, at any time ¢

/gAf / <—+an+bf>
/f g—/ <g+an+bg>

Therefore q if
g ~ ~
J 12405 = [ @Yy~ @Vg)f + (b - B)fg
N dt dt N
Choose b = b and @ = —a then the term (b — b)fg vanishes and the two first terms become
InVa(fg) = — [y fg diva = 0 where diva := aala is the divergence. Therefore one has

% Jx fg =0, meaning that

Jotln= [ sa=[ g <] e bllee < Pl bl
N W Nxw Nxa « «

where we applied Theorem (90| to ¢ (strictly speaking, to §) and B only depends on @ = —a and
b=b. O
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Chapter 8

Regularity estimate of Polynomial
differential operators

Definition 15. We say that P is a polynomial differential operator of type (n,k) if P
s of the form

.....

where the coefficients cq,....anu depend smoothly and nonlinearly on x and F and a; € RY are
indices with the weighted norm ||o;|| < k and Y ||ay]| < n.

Example 8. On M X o, w| the tension field T7(F) := —AF® +gijF2?7(F)FfFj7 is a polynomial
differential operator of type (2,2). The quadratic term alone is of type (2,1).

8.1 A regularity estimate for polynomial differential op-

erator.

Our goal in this part is to prove the following estimate for polynomial differential operator, in
which X will be M X [, w].

Theorem 92 (Regularity of polynomial differential operator). Let X be a compact Riemannian
manifold, B C RY is a large Fuclidean ball and P be a polynomial differential operator of type
(n,k) on X. Suppose that

r+nl
s q

1
r>0, pqge(l,o0), r+k<s, -> (8.1)
p

Then for all F € C(X,B)NW#*4(X), one has PF € W™(X) and
IPF|lwro < C (14 ||F[lwsa)”".

where C' is a constant independent of F.
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We will prove that the result is local, in a sense to be defined. Then we will prove the local
statement using Besov spaces.

Proof (reduction of Theorem[99 to a local statement). Let {¢; : U; — V;} be an atlas of M.
We denote a point in U; by x and its coordinates in V; by &. Let > 1; = 1 be a partition of
unity subordinated to {U;} and 1; be smooth functions supported in U; with 0 < ¢; < 1 and
¥; = 1 in the support of ¢, as in the definition of Sobolev spaces on manifold. We suppose the
following local statement is true:

Lemma 93 (Local statement). Let P be a polynomial differential operator of type (n,k) and
coefficients cq, ...y (, F) are smooth and vanish when v € RY™X s outside of a compact. Let
B C RY be a large Euclidean ball and r,p,q,s as in . Then for all compactly supported
F € C(RY™X BY N W(RI™X) " one has

IPFlwro < C(1+ [[Flwsa)™?
where the constant C' depends only on B and the support of F, and not on F.
One has
IPFlhwes i= 3 [:PF s

where viewed in the chart U;, each 9;(z)PF(z) is Y, 1i(€).cal€, gi).D%g; where g; = fiop; ! is
fi viewed in the chart. Since 1); = 1 in the support of v;, one has

Vi(€).cal€, 9i)-D*gi = Vi(€)-cal&, ¥igi) D* (Vi)

hence by the local statement:

o ~ /
1%i(§).ca(&, 9i)-Dgil[wrr < C (1 + ||¢i9i||ww)q "<c (1+ ||F||W57f1)q/p-

Therefore | PF|[yrs < mC (1 + ||F|lweq)”? where m is the number of charts we used to cover
M. [

Remark 37. The use of partition of unity in the last proof is to decompose PF = > ;PF
and not F = ¢;F since we no longer have linearity of the operator P in F.

8.2 Review of Besov spaces B*?.

In this part, X = R" coordinated by (z1,...,z,) with weight (o1,...,0,). We define
T f(wy,. .y mn) o= f2n, . x o, ), AL:=T7 —1d

for f € S(X).

For the notation, we will denote the Besov spaces by B*? with s € R.q\ Z and p € (1, 00)
so that they look similar to Sobolev space W*P. In a more standard notation, our spaces B*P
are denoted by Bj ,
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8.3. PROOF OF THE LOCAL ESTIMATE.

Definition 16. We define B*? as the completion of S(X) under the norm

14507 |z
pri= 3Dl 3 s i

v
lIvlI<s s <lll<s

/]

We cite here some well-known facts

1. While Sobolev spaces with non-integral regularity are complex interpolation of integral
ones, Besov spaces are their real interpolation.

2. Besov spaces B*P(X) are reflexive Banach spaces with their dual spaces being B~*# (X))
where % + 1% =1

Theorem 94. Ifr < s then

WeP(X) C B (X) Cc W"P(X).

IN

one

O<a<l,p<
Theorem 95 (Multiplication). For f,g € S(X) and { ) 219_
" p

1 1 _
Lpl-d iy

Il
S
I
== 3

Q= k3
LN
IN

=

has

1fgllBer < C (1 fllBrliglize + [[fllrllgll pea)
1fgller < 1A llzrllgll e

Therefore by density (8.2)) is true for all f € LP N B*P g € LY N B*? and (8.3)) is true for all
felLr ge L.

The reason for which we use the Besov norm is the following estimate:

Theorem 96 (Composition). Let I'(z,y) be a continuous, nonlinear function of variables x €
R,y € RN. Suppose that I' vanishes for all x outside of a compact in R™ and I is C-Lipschitz
iy, and define

I'f:=(z+—T(z, f(x))).

Then
ITAI <O+ fllpar)

8.3 Proof of the local estimate.

Since B""P(X) C W"P(X), by increasing r a bit, we can suppose that r ¢ Z and replace the
WP norm in the statement by the B™P norm, that is to estimate:
|AFDY(PF)|| v

o] =TTas /o

IPFprr = > IDY(PF)o+

Ivll<r r—o/oi<|lyll<r
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where

DY(PF) =Y cp, .5, (x, F)DP for ... DPw fou (8.4)

.....

with max [|5;[| <k + [l7[| and 2|5 < n+[y]]-
Using AY(fg) = AL f TP g+ fAjg, one can see that A7 D7(PF) is a sum of terms of 2 types:

Aleg,. 5, TH(DP ) . T (DP o) (8.5)

and
Chr.. B, D*Blfbl o D,Biflfbifl A;{(D/Bifbi) T]?)(Dﬂiﬂfbiﬂ) o T;}(D’B“fb“) (8.6)
Our strategy is to use Theorem (95| to estimate the terms (8.4, (8.5) and as follows,

where we denote ||g|, := ||g]|

.....

S Sl gulloo 1D f gy - D% £, (8.7)

.....

|61 DI DO AYDP ) T (D fo) LT (D )| <
I¢g1.ep oo 1D M Iy < IDP 2 oy JATD o) [ [IDP o5 gy - [[D £,
(8.9)
Then continue by bounding the A} terms:
1A% s, pullpe < [0P77CLA+||F | gose) < [0]*737C(L+ || F llworo) (8.10)

.....

777777

bound is, using Theorem [94}

IAL(D% o)l < [P f* W poaivose < 017N oo (8.11)

is bounded by a constant, it remains to estimate || f% ||y 15005 |2 | ywisi0+05 and || F|lyos in
term of || F'||ws., for which we will use the following consequence of Interpolation inequality.

Lemma 97. Let 0 < r < s and p,q € (1,00) such that 0 < %— g% < 1—2=%. Then for all

compactly supported F € C(X, B) N W*? where B C RY s a large Euclidean ball, one has
|Fllwer < CIFIC I < CIFI-

where C,C" depend only on B and the support of F, but not F.
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8.3. PROOF OF THE LOCAL ESTIMATE.

Proof. Since F' is bounded, f& € W4 W% for all v > 1. By Interpolation inequality

1—
1w < 2052 02l g
then choose v with (1 — %)L =1 21 O
P sq
0< L lBillr ¢ _ 5l
pi s q s
To apply Lemma |97, we have to choose p;, p;, Po, 0 such that < 0 < 1% — ”Bii:e“% <1-— Hﬂi:@”
101 0
We choose L just a bit bigger than H’gi”l, L just a bit bigger than IBtO L ang L just a bit
pi s q’ Pi s q o

bigger than gé. We will now come back to justify the estimates (8.7)), (8.8)), (8.9). Since F is
bounded in B and compactly supported in an open set V', we see that || f*||, < C(B,V)| f,
if p < q. Therefore,

1. For , it is sufficient to have

which is true because the RHS is is a bit bigger than é S5 < %!7” < "q—? < %.

2. For (8.8]), it is sufficient to have

1 1 1 1
-2 —+—+-+—
P DPo D Pu

where the RHS is is a bit bigger than g% + é > 18] < neHblEe

qs
3. For , it is sufficient to have
1 1 1 1
7274_..._'_7_1_..._’_7
P DN pi Pu

where the RHS is is a bit bigger than g% + q—ls S5 < %.

It is sufficient then to take § = r — ||7]|. Now the estimates (8.7), (8.8), can be

continued as

RHSED) <ITI/"

oi/o 0/s i ill/ S oo 0/s
RHSEI) < o]/ (L4 |1 F i) T I < ol (L4 1Pl ) I FIRE.  (8.13)

18:ll/s il q/p
wed < Fllwee < F e (8.12)

1811+-6

Ooj/c bill” s b |(1Bull/s Ooj/o 15;]1+¢ q/p
RHSED) < o' (141 ws ) TLIS Y™ < ol (14 1F s ) IS
(8.14)
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While B.12) gives [|D(PF)|, < C||F|[§%.,, the last two (8.13) and (8.14) give

Y w |ATDY(PE),
WP Jo|=ThDes/e

=& <lhli<s

< C(1+IFIGE")

We proved the local statement Lemma 93]
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Chapter 9

A comparison theorem, Sobolev
imbeddings and Konrachov theorem
for Riemannian manifolds

In this part, we will first establish the Sobolev imbeddings theorem and the Kondrachov theorem
for Riemannian manifolds from the Euclidean version of these theorems.

Theorem 98 (Sobolev Imbedding for R™). Given k,l € Z, k>1> 0 andp,q € R, p>q > 1.
Then

1LIf =

— k=l then
n

=

WHIUR™) — WhP(R™)
is a continuous imbedding.

2. Ifk

-
n

> % then

Wk’q(]R") — CR(R™)
If IHT_O‘ < % then
Wk’q(R") — C"*(R")

where CZ(R™) denotes the space of C" functions with bounded derivatives up to ordern, equipped

with the norm ||ullcy, = max;<, sup |V'ul|, and C™* is the subspace of C of functions whose

u(P)—u
¢+ 3uPp ol “Eg )

rh-derivative is a-Holder, equipped with the norm ||ullcr o = ||u|

Theorem 99 (Kondrachov for Q C R™). Let Q C R"™ be a bounded open subset with reqular
boundary and let k € Z>y and p,q € Ry be such that 1 > % > % — % > 0 then

1. The imbedding W*4(Q)) — LP(Q) is compact.

2. The imbedding W*(Q) — C*(Q) is compact if k — o > 7 where 0 < a < 1.
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3. The imbeddings Wy (Q) — LP(Q) and WEY(Q) — C*(Q) are compact, where Wy (Q)
denotes the closure of C®(Q) in W*4(Q), i.e. the subspace of functions whose trace
vanishes on the boundary of €.

Theorem [98) will be generalised for complete manifolds with bounded curvature and injec-
tivity radius, while Theorem [09] holds for compact Riemannian manifolds.
The generalisation will be done in 2 steps

1. Compare the volume form of the Riemannian metric ¢ near a point and that of the
Euclidean metric on the tangent space at that point. Theorem [103| gives an equivalent
between the integral under g and the integral under Euclidean metric via the exponential
map.

2. Reasonably use partition of unity to establish global results from local results (the Eu-
clidean case). We will need a covering lemma (Calabi’s lemma), which essentially reduces
to a combinatorial result (Vitali’s covering lemma).

Finally, we will apply imbedding theorems to solve the equation —Au = f on a Riemannian
manifold when f is square-integrable.

9.1 Quick recall of Jacobi fields, Index inequality

Definition 17. A Jacobi field is a field Y defined along a geodesic y(t) such that

D? . .
V() + RY(1),5(0)i() =0 91)
where R denotes the Riemann curvature tensor.

Remark 38. 1. Since (9.1) is linear, a Jacobi field is uniquely defined given Y (to) and

Y (to).
2. IfY/(0) L 4(0) and Y(0) L 4(0) then Y (t) L #(t) for all t.
3. If Y, Z are Jacobi fields along v then
(Y, Z) — (Y, Z) = const
In particular, if Y, Z vanish at a same point py in v then (Y, Z) = (Y, Z) on 7.
There are two ways to interpret Jacobi fields:
1. Jacobi fields are derivative of exponential maps

2. Jacobi fields are minimisers of Index form, i.e. the variation of second other of length.
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9.1. QUICK RECALL OF JACOBI FIELDS, INDEX INEQUALITY

The first interpretation is the content of the following Proposition.

Proposition 100. Let Y (t) = Dexp,(tu).t{ be a vector field defined on a geodesic ~(t) =
exp, tu. Then'Y satisfies

{Y(O) =0,Y(0) =¢, (9.2)

Y+ R(Y, %)y =0,
hence a Jacobi field.

In concrete term, denote by 1 the exponential function at p € M and g = ~(r) = exp, r¥(0),
then Proposition [L00|says that if the Jacobi field Y vanishes at p = 7(0), i.e. Y(0) = 0 then Y (r)
at y(r) is defined as follow: pull-back Y (0) by 1, transport parallelly, w.r.t to the Euclidean
metric of T, M, 1*Y (0) from 0 to Xy = 1»~'(g), then push-forward by 1, one obtains Y'(r). See
Figure 9.1}

Figure 9.1: Jacobi fields and exponential maps.

Since Jacobi fields are derivatives of exponential maps, one can rephrase the phenomenon
of cut-locus by Jacobi fields. Historically, a point ¢ on a Riemannian manifold is said to be a
conjugate point of p if there exists, along a geodesic connecting them, a Jacobi field vanishing
on both p and ¢. This means that the exponential map with origin in p degenerates at a
preimage of q. One can also prove that if ¢ is in the cut-locus of p then at least one of the
following situation occurs

1. ¢ is a conjugate point of p.
2. There exists 2 minimising geodesic from p to q.

For another interpretation of Jacobi fields, note that given a geodesic v and a vector field
Z defined along v, then the first variation of length when one varies v by Z is 0 and the second
variation can also be calculated without difficulty.

Proposition 101 (Second variation of length). Let v : [0,7] — M be a geodesic and Z be a
vector field along v that is orthogonal to 7 at every point. Denote by Ly length of the curve
t — exp, ) AZ for A < 1, then one has

d2
il s
a2

=1(2) = /0 (I1ZON2 + (RG(2), Z(0)3(2), Z(1)) ) de (9:3)

A=0

Definition 18. Let v : [0,7] — M be a geodesic and Z be a orthogonal vector field along ~.
The Index form [(Z) of Z is defined by the RHS of (9.3)).

Remark 39. The curvature term in (9.3) is K(%, Z)||Z||* where K denotes the sectional cur-
vature of M.
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Jacobi fields can be seen as the unique minimiser of the Index form among vector fields
defined on a geodesic v : [0,r] — M with the same value at v(0) and ~(r).

Theorem 102 (Index inequality). Let v : [0,7] — M™ be a geodesic, p = v(0) and q = y(r)
such that p has no conjugate point along v, or equivalently the exponential map in direction
4(0) does not degenerate.

e Let Z be a (piecewise smooth) vector field along vy, orthogonal to 4 with Z(p) = 0.

e LetY be the Jacobi field along v with Y (0) = 0,Y(r) = Z(r) and Y is orthogonal to 7.
Then 1(Y) < I(Z) and equality occurs if and only if Y = Z.

Remark 40. Note that such Jacobi field Y exists and is unique. Firstly, by the second point
of Remark one only need Y (p) = 0 and Y (0) L v(0). The Jacobi fields satisfying these
conditions form a vector space of dimension n—1 (by Cauchy problem, Y(O) is to be chosen in
the orthogonal space of (0)). Since the exponential map does not degenerate on the preimage
of v, each Y (0) corresponds one-to-one with an'Y (1) by Proposition . The correspondence is
linear, with source and target spaces of same dimension (n—1), it follows that each Z(r) L ~(r)
gives uniquely a Jacobi field Y .

More concretely, let V;(0) be a basis of 4(0) in T,M and V; be the corresponding Jacobi fields
with V;(0) = 0, then

1. {Vi(t) }iztsz is a basis of y(t) in TyuyM, where the orthogonal part follows from Remark
and the linear independence is by the non-degeneration of since exp,,.

2. If Z(t) =X fi(t)Vi(t), where f; are functions on [0,7], then Y (t) = >; fi(r)Vi(t).
Proof. As Remark , let Z =3, f;V; and denote W =}, f,V; then

2= /(WW”QZﬁ%M’ (S £V 3 V) + (ROL S AV 4 )

By definition of Jacobi field, R(¥,V;)4 = V;, hence the curvature term is
r . r d . .o
A<v§ﬁzVZEJZZAﬂMW%WZZAﬁb@NMQ—MMOﬁ
:_/ <Zf1‘/“zf] >dt+ _22/ fzf] 2 ] t

where for the second line, we integrated by part and used the fact that (V;, V;) = (Vi, V;) (point
3 of Remark . Therefore, one has

= [TIWlRdE+ (v (), Y ().

In particular I(Y) = (Y (r),Y(r)) < I(Z). The equality occurs if and only if W = 0, i.e.
Z =Y. [
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9.2. LOCAL COMPARISON WITH SPACE FORMS

9.2 Local comparison with space forms

Our goal in this section is to prove the following Comparison Theorem. Before going to the
precise statement, let us explain the notation.

Notation. Given M" a Riemannian manifold and B(p,r) be the geodesic ball centered in
p € M, of radius ry < J, the injectivity radius at p, equipped with the pullback metric of g via
exponential map exp,, which can be expressed in polar geodesic coordinates as

(ds)? = (dr)? + r2ggig; (r, 0)dO'd6?

where %, e % is an Euclidean orthonormal frame of the sphere rS*~!. We note |gg| =
det(ggigs)i; and ggg be any component ggigi for i =1,...,n — 1.

Abusively, we say that 2% = r if @ = 0 and sinar = %sinh tar and cos ar = coshiar if
a € tR.

Remark 41. Note that the frame {%}i may not be global, for example when n is odd (Hairy

ball theorem). However the quantity |ge| is globally defined (except at p), in fact |gg| = 772" 2|g].

Theorem 103 (comparison of volume forms). Let M™ be a Riemannian manifold with

e sectional curvature —a*> < K < b?

e Ricci curvature Ric > a’ = (n — 1)a® where o can be real or purely imaginary.
Then with the notation of the last paragraph, for all v € (0,19),
1. Ifr <7 then

0 sin br

0
— / >
or log /900 = or log r 0.4
sin b\ 2 (9-4)
oo =

br
2. One has
0 0 sinh ar
— log +/ < —1
or 8 gae_arOg r o5
sinh ar 2 (9-5)
oo <
ar
3. One has
glog\/% < (n-— l)glog AT gt
or or r 3 (9.6)

\m - <sinar>"‘1
gol = ar
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4. If r < % then

(9.7)

Remark 42. 1. The moral of the estimates is that if r < 1 then the volume form of g,
viewed in the tangent space at p, is equivalent to the Euclidean volume form of T, M.

2. One can always choose a € iR even when the Ricci curvature is positive, and RHS of
will be a hyperbolic function and the estimate is not as sharp as if one choose a € R,
but it works to prove that the two volume forms are equivalent when r < 1 .

Remark 43. A few consequences of Theorem [103;

1. For 0 small, the metric volume form dV 1is equivalent to the Fuclidean volume form of
tangent space: there exists C'(8) > 0 converging to 1 as 6 — 0 such that C(§)"'dE <
dV < C(0)dE.

2. Let f be a smooth function defined on B(p,d) then the gradient of f w.r.t the metric g is
closed to the Euclidean gradient of f viewed in the chart (namely f o exp,):

2 2

|of of
IVflly = |é?r +Ze: 59 0)| ge0
2 2
19 oesmylle = 52| + 3| r.)

3. Combining the last 2 points, one can see that if f is supported in a small geodesic ball
B(p,6), then the LP-norm of V f is closed to the Euclidean LP norm of V(f oexp,) if 6
1s sufficiently small.

The ideal to prove Theorem comes from Proposition and Figure[0.1] Given a point
q € M of distance r < ry from p, then denote by Y the Jacobi field along the unique geodesic
connecting p and ¢ such that Y vanishes at p and Y (r) = % at ¢, then with ¢ = exp, as in
Figure (9.1}

1Y (r)||> = W}OY(T)'W - WSW@H%@
=gl bgY (013 = 1 ge0||Y (0)1?

0
=1r?g ( :
TS”1> a0’
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where we used the fact that

0 0
I\ o6

901

0

2
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Take logarithm and derive w.r.t r, using the fact that ||Y(r)|| = 1, one obtains

. 1 0
Y(r),Y =—-+ —1 9.9
(), Y (1) = 5 + = log gus 9.9)
It comes to estimate (Y (r), Y (r)), which is in fact the Index form of Y. The following lemma
give an estimate of the Index form in case of bounded sectional curvature, by comparing the it
with the Index form under a metric with constant sectional curvature.

Lemma 104. Suppose that the sectional curvature K < b?, then for every Jacobi field Y defined
a long a geodesic v : [0,r] — M with r < 35 such that Y/(0) = 0,Y L. Then

1Y) = B(Y) = [ IV = b)Y |2 = beot briy (r)|*

Proof. By the curvature bound, I(T) > [7||Y||? = b*||Y]]* =: I,(Y). The quantity I,(Y) is
exactly the Index form of Y along + if the sectional curvature in constantly b. To be precise,
we equip the tubular neighborhood of v a metric ¢’ of constant sectional curvature K = b? such
that normal vectors of v w.r.t the metric g remain normal under ¢’. Such ¢’ is in fact easy to
find since:

1. The tubular neighborhood is diffeomorphic to [0, 7] x B"~! where the diffeomorphism (says
t1) is actually isometry at points of v, which are mapped to [0,r] x {0};

2. Also, there exists a diffeomorphism ¢, mapping [0,7] x B""! to a tubular neighborhood
of an arc 4 of length r on the grand circle of S’f/b which is isometry on every point of
[0,7] x {0}. This is because r < 2= < 27y the length of the grand circle.

3. One now can identify a tubular neighborhood of v in M and that of 7 in S}/, by ¢ = 1201;.
Take ¢’ to be the pullback of the Eucidean metric on S?/b, which is of sectional curvature

b2

Now under the metric ¢’, Y is no longer a Jacobi field, but it is still orthogonal to -y, denote
by Y the Jacobi field (under ¢') on 7 that vanishes at 4(0) and has the same value as Y at

~(r). By Theorem [102] (Index inequality), one has I,(Y) > I,(Y). The latter can be computed
directly, as the field +,Y is given by

s+ (s,B'sinbs,..., " tsinbs), s€[0,r]
where (8',...,3"1) is the coordinates of ¢1,Y (r) in [0,7] x B""!, hence in this coordinates
(also called Fermi coordinates), Y (s) = (s, :iEZfY(r)) . Hence I,(Y) = beot br||Y (r)]|%. O

Now the remaining part of the proof of Theorem [I03]is straightforward.
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Proof of Theorem[103 From and Lemma [104] one has

1 1
;ﬂlogw/ggg =I1(Y)— . > beotbr — .

This gives the estimates in (9.4)).
For (9.5)), the sign situation fits Theorem better, and one does not need to explicitly
evoke the space forms (as Lemma [104)). It suffices to see that

sinh ar
T hat 2 r (sinh at 2
cor ([ (shar)", ) Iy o
=4 (0 (sinhar + o \sinhar Yl

= acothar||Y (r)|?

V)Y () = I(Y) < 1 (S.i“h “wr))

The estimates in comes from the comparison between Y and the field ¢ — 320y (y),

Note that the field is Well defined even when a € R.q (the hyperbolic case (o € iR being
obvious). This in fact comes from the following fact:

Theorem 105 (Myers). Let M™ be a connected, complete manifold with Ric > (n — 1)a® > 0
then

1. M is compact.
2. The diameter of M is at most w/c.

Taking sum of inequalities I(Y;) < I(22tY;(r) where Y; are Jacobi fields vanishing at ~(0)

and whose values at v(r) are a(?oi respectively, one has

ol T t sin ot
Vi) Yi(r)) < (n—1 2/ (Coso‘)dt— /R,,zw< )dt
;< (T)’ (r)) - (n )a 0o \sinar Z orro sin ar

< (n—1)acotar

where for the second line, we used the fact that 3; R,gi.g: = Ric, > (n — 1)a?. Hence

-1
710&/5 Zlog\/gaiez Zym Yy —
1 .
<(n—-1) (OéCOt ar — ) =(n— 1)210g (Slnow“)
-

r or
The proof of (9.7) is essentially the same as where one uses (9.4 for a lower bound of
1(Y;) = (Yi(r), Yi(r)). O

As a side note, Lemma [104] can also be used to prove that a small geodeosic ball is geodesi-
cally convex.
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Proposition 106. Let M™ be a Riemannian manifold with sectional curvature K < b* and

g, 1}, any geodesic ball B(p,r) is geodesically

convex, i.e. any two points is connected by a geodesic curve inside the ball.

injectivity radius 6 > 0. Then for every r < min{

Proof. We first claim that

Lemma 107. Given two point p, q of distance d(p,q) = r < 3; and 'y, the geodesic connecting
the them. Let v be a geodesic staring from q with a velocity vector perpendicular to I', 4, then
there exists a neighborhood of q inside of which the vy intersects I', , only at q.

First, let us prove that the Lemme implies Proposition [I06] If  small as in the Proposition
and ¢, g2 € B(p,r) then

1. There exists a minimal geodesic Iy, 4, connecting ¢, go.

2. By triangle inequality, I'y, ,, C B(p, 2r): every point g € I'y, 4, has to be d(q1, ¢2)/2-closed
to one g;, hence d(p, q) < d(p, ¢;) + d(gi,q) < v+ % =2r.

Let T' € T'y, 4, be the point minimising the distance to p. It suffices to show that 7" is one of
the ¢;. For the sake of contradiction, if 7" is strictly in the interior of I'y, ,, then

1. The geodesic I', v connecting p and 7" is orthogonal to I'y, 4, at 7T". It is not difficult to
prove that if the two are not orthogonal then there exist 7" € Iy, ,, and S € ', 7, both
being near to T, such that d(p,T) > d(p,S) + d(S,T") > d(p,T").

2. The ball B(p,d(p,T)) Ny 0 O Tgrio-

These contradict the Lemma and prove that 7" does not lie in the interior.

It remains to prove the Lemma. Let Y be the Jacobi field which vanishes at p and whose
value at ¢ is 4, then by Index inequality (Theorem [102)), it suffices to prove that I(Y) > 0,
because any variation of I',, by orthogonal vector field Z along « has I(Z) > 0 hence only
increases the length, according to Proposition [L01] But by Lemma gives

I(Y) > I,(Y) > beot br|[Y ()| > 0 if r < 215

9.3 Some covering lemmas

The goal of this section is to prove a covering lemma for Riemannian manifolds with injectivity
radius dp > 0 and bounded curvature (Lemma [110). We start with a covering lemma that not
yet requires curvature bound.
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Lemma 108 (Calabi). Let M™ be a Riemannian manifold with injectivity radius 6y > 0, then
for all 6 € (0,0), there exists 0 < v < B < 6 and a partition of M = | |;c; % and p; € §; such
that

B(pi,v) C Qs C B(pi, B)

Moreover, one can choose v = /10 and 5 = 9.

Proof. Note that it is enough to have

(9.10)
B(p;i, 27y) are disjoint

B j ) mQ,:®>B (2 cQCcBb (2
In fact, let Q) = B(p;, 8) \ U;=B(p;,7) then (s, 7) N (Pis ) ' (p:, 5)
(for U; 2, = M: If x € M satisfies x € B(p;,y) C B(pi, ) then there is no other j' # j such
that © € B(p;7,7), hence x € ;. Now choose

Q= 0,0 = A\ Dy, 2 = Q) \ UM

For the existence of (9.10)), use the following Vitali covering lemma, whose proof is purely
combinatorial in nature.

Lemma 109 (Vitali covering, Infinite version). Let {B; : j € J} be a collection of balls in a
metric space such that
sup{rad(B;) : j € J} < 400

where rad denotes the radius, then there exists a countable subfamily J' C J such that {B; :
j € J'} are disjoint and
UjesBj C UjerdB;.
It remains to apply the lemma for the covering M = U,y B(x, 27), which also allows us to
choose v = /10 and = §. ]

Lemma 110 (Uniformly locally finite covering). Let M™ be a Riemannian manifold with in-
jectivity radius 69 > 0 and bounded curvature, then for all & < dg sufficiently small, there exists
a uniformly locally finite covering of M by balls { B(p;,0) }icr, i.e. there exists k(0) € Zg
such that for all ¢ € M, there exists a neighborhood of q that intersects at most k(0) balls.
Moreover, one can also require that {B(p;,d/2)}ier is still a covering.

Proof. We will apply Lemma with 5 = ¢/2 and v = /10, then for all § < dy, the
covering {B(p;,2[3)} satisfies. In fact, for every ¢ € M, take B(q,d) as a neighborhood of ¢
then B(p;,28)N B(q,v) # 0 if and only if p; € B(q,25+~) Since the balls B(p;,~) are disjoint,
the number of p; in B(q, 25 + ) is bounded by

max vol,(Bagtay)

k:

283 + 27)”
8

<) (

min vol, (B,)
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9.4. SOBOLEV IMBEDDINGS FOR RIEMANNIAN MANIFOLDS

where max vol,(Bsg2,) and min vol,(B,) denote the maximum and minimum volume of balls
of radius 23 + 2+ and , respectively. By Theorem , for 6 < e(a’,b) depending on the bound
a’ and b of Ricci curvature and sectional curvature, the volume of these balls are equivalent
to that of Euclidean balls of the same radius. The constant of equivalence was denoted by

(). O

9.4 Sobolev imbeddings for Riemannian manifolds

The goal of this section is to prove that Sobolev imbeddings are also available for complete
Riemannian manifold with bounded curvature and strictly positive injectivity radius, that is,
the following results.

Theorem 111 (Sobolev imbeddings). Theorem @ holds when one replaces R"™ by a complete
Riemannian manifold of dimension n with bounded curvature (sectional and Ricci) and injec-
tivity radius oy > 0.

The definition of Sobolev spaces as completion of spaces of smooth functions, w.r.t the
Sobolev norms generalises on Riemannian manifolds, namely, we denote by Wéc P(M) the com-
pletion of C2°(M) w.r.t the norm ||¢|lywr.r = ||¢llze + [|Volle + - + [[VEo|| r where || V||
are computed as follow: the metric g induces a fiberwise norm for [-covariant tensors, integrate
that of V', one obtains ||[V'¢||z».

Similarly, the space W'?(M) is defined as the completion of C*°(M) w.r.t || - [lwi.e.

Remark 44. 1. Unlike the Euclidean case, one does not define the derivatives term, e.g.
Vof for f € WYP(M) using integration by part and Riesz representation, that is, one
does not expect a formular such as [,;(V,f)edV = — [, fVuodV since the "boundary
term" [,y Vo (fo)dV does not vanish, even if fo € C°(M).

2. The exterior derivative df can be defined, which is in fact equivalent to de Rham’s notion
of current.

3. The term V'f for f € W*P(M), when needed, can be defined as a LP section of (T M*)%!
giving by the LP limit of smooth sections V'p; for an equivalent class of Cauchy sequence
p; representing f. The completeness of the space of LP sections of a vector bundle follows
from the result in each trivialising chart and the fact that restriction maps commute with
the limit.

Proposition 112 (W' = Wy"P). If M is complete then C=(M) is dense in WP(M), equiv-
alently WP(M) = WyP(M).
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Proof. 1t suffices to prove that given a function ¢ € C*°(M), one can approximate ¢ under the
norm || - ||y by functions in C2°(M). Fix P € M, one uses a cut-off function y; which is
1 on [0, ], 0 on [j,00] and linear inside and defines ¢;(Q) = ¢(Q)x;(d(Q, P)). Note that the
distance function is only Lipschitz and not necessarily smooth (so we did not mind taking a
linear cut-off). However, since ¢; is compactly support and Lipschitz and we can approximate
each ¢; by a sequence in C°(M): Let K; be the support of ¢; and {e;}; be a finite partition
of unity subordinating to an open coordinated cover of K. Since a;p; is Lipschitz, viewed in a
chart, it can be Wh*-approximated by smooth functions, due to the following fact.

Fact. If Q C R" be a bounded domain with 6Q regular, then Lip(Q2) = W*°().

The approximation scheme looks like p ~ ¢; ~ 3=, a; k,0; = 32, i ; where t; ; are smooth
and compactly support. O

Remark 45. The similar results for higher orders are complicated, for example, one can prove
that W02 P = W?2P under the hypothesis of bounded curvature and strictly positive injectivity
radius. The third order requires extra conditions.

The second part of the Theorem is local in nature, and therefore easier. We will prove
this second part by accepting the first one, which we will come back and prove eventually.

For the imbedding into C%(M), it suffices to establish the case W4 — (9%, the higher

order case then follows: If ¢ € W*4 then V"o € WF ™4 — Whma — Wi — C% where
1S 151 kerol

Similarly, for the imbedding into C™*™) it suffices to establish the case W — C%¢ for
lma » 1
n = gq

Since W'P(M) = W, P (M), it suffices to prove the following Lemma and Lemma m

Lemma 113 (W19 — C9%). Let M™ be a complete Riemannian manifold with injectivity radius
8o > 0 and sectional curvature K < b*, then for all ¢ € C°(M), one has

sup ¢ < Clg)llellwra, Vg >n

Proof. Take § < min{dy, 55} and let (r,0) be the geodesic polar coordinate centered at P € M,

then by Theorem [103] the ratio of the metric volume form dV := |g|dE and the Euclidean
s n—1
volume form dE of TpM is \/|gs| > (%) > (%)n—l‘

let x : R>g — R be a cut-off function which is constantly 1 near 0 and supported in [0, §).
Then

d
o(P) =~ [ 0. (p(r.ox(r)dr, VoS!
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Integrate w.r.t § € S*°!, recall that w, denotes the volume of S"~:

lp(p)] < (wnq)‘l/ IV (o(r,0)x ()| " drdf

/4 5 d
(Wn-1) (/ IV (p(r,0)x(r))|* dE) <wn_1/ T(”_l)(l_q)dr>
0

1 /
T — 71/q , q— ]. q:n /q
)" (W) Vol ze + sup [X'| |||l 2o 01
[0,9] g—n

2
where ¢’ denotes the Holder conjugate of ¢ and for we used Holder inequality w.r.t dE for the
second inequality and the comparison dE < (5)"~'dV for the third. The conclusion follows. [J

<(

Lemma 114 (WY — C%), Let M™ be a complete Riemannian manifold with injectivity
radius 09 > 0 and bounded curvature, then for all o € CX(M), one has

< |

1
sup |¢| + sup |p(P) — o(Q)| d(P,Q)™* < C(a, q)|lellwra,  for all
M P#Q

Proof. By Lemma , one can discard the term sup,, |¢| and only need to treat the second
term of LHS. Let 6 < min{dy, ;} as in the proof of Lemma m (b* being the upper bound of
the sectional curvature). One only need to consider the case where d = d(P, Q) < 0/2 because

otherwise |¢(P) — p(Q)| < 2llpllL=(5) (P, Q).

Let O be the midpoint of P, (), and denote by h := ¢ o exp,, defined on the Euclidean ball
B(0,2d) D Bo := B(0,d/2). We also denote by P, () the preimages of these points in Bp. See
Figure 9.4}

Figure 9.2: Left: the picture viewed in normal polar coordinates at O. Right: the picture
viewed in normal polar coordinates at ().

Now place Bp in polar coordinate centered at Q:

h(z /(% r@dr—r/—hrtQ
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Integrate on Bp 3 x w.r.t to the measure dEg given by the normal polar coordinates at Q:

p(0) 19
_ < n—1 -
/BO |h(z) — p(Q)|dEq < /r:o r r/o !aph(rt,9)|dtdrd0

feSn—1

(wi=rt,pB) <d) < /6 o /:O /u t_do =y gph(uﬁ)‘dtdudQ
_ [ ( / td / 9 1w, 0) u.dEQ> dt
t=0 u=0Joesr-1 [Op
Lo 0 ¢ Va /1 4a P /4
(Holder w.r.t dEg) < t:Ot (/u:O /gegn_1 a—ph(u,&) dEQ> (/0 wp_1ulu du) dt

1 . 1 1/‘1/ d l/q
t<1 < [ [ qa)e / / VolidE, | dt
(t<1) ~ Jit=0 (q’+n( ) ) ( u=0 Joesn—1 Vel'dEq

1/q
= dlg’ / Vol|lldE
1((1’”) ( (’d)\ <P| Q)
(9.11)

Now using the fact that %dV < dEg < AdV since the curvature is bounded, one has

Lo le(@) = 9(@)aV < Calg,m)d™ 7|V
B(0,d/2)
Taking sum with the same computation for P, one has
[p(P) = ¢(Q)] voly(B(0, d/2)) < 2C5(q,n)d "7 || Vep]| o
since vol,(B(0,d/2)) > A~ w,_1d", one has

|p(P) — ¢(Q)| < Cs(q,n) ||Vl pad /1

The conclusion follows since 1 — % > q. O

For the first part of Theorem [111] it suffices to prove the case k = [+ 1, that is, there exists
a constant Cy, Cy > 0 such that |Jul|z» < C1||Vul|ze + Callul|pe for u € WH(M) and % = é— i
The proof by |[Aub98| tries to optimise the constant Ci, in an attempt to find the best
inequality [Aub98, page 50]. We will follow their arguments, as the extra effort is not much.

We will prove that

Proposition 115. Given p,q € R.q such that ]l? =
such that

% — % > 0, for any € > 0, there exists A,(e)

[ully < (K(n, q) + )[[Vul o + Ag(e)]u] o
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The appearance of the constant K (n,q), given by

_ _g 1Y/a 1/n .

q—1 n—gq I'(n+1)

K(n,q) = { "D [mlq—l)} ) o ia> 1
1 n n : _
- (wnil) , ifg=1

is due to the following local result.

Theorem 116 (Aubin). Given 1 < q <n and u € WH(R™), with ;1) = % — L. one has

[ullr < K(n, @) | Vul|La.
In fact, K(n,q) this the norm of the imbedding W14(R") — LP(R").

We will accept the local result and use the Covering Lemma to prove Proposition [115],
which implies Theorem [111}

Proof of Proposition[115 Note that given any smooth function f supported in a small geodesic
ball B(q,0), by applying theorem to the f, viewed in the chart (that is, f o exp,) and use
the fact that C(8)™'|V(f o exp,)|lzaar) < |V fllLa@y < CO)||V(f o exp,)||Loar) (see remark
, one has

1fller < Ks(n, )|V £ e

where Kj(n,q) converges to K (n,q) as 6 — 0.
It suffice to cover M by geodesic ball B(Q;,d) such that there exists a partition of unity
subordinated to B(Q;, ) such that ||V(h3/q)|| < H = const. In fact for ¢ € WH4(M), one has

bl = (1) - (/M (Stern)”) q/p

(since p > q) < Z (/ (l|9h; p/q> Z HSOhl/qH

< Ki(n h! ' + Whl/qH

Using the fact that there are at most k(d) balls overlapping at a point and that (a 4 b)? =
at (1+2)" < a?(1+22 +20(4)7) < a7 + 2ba?™" + 291, one has

Iielly < Kitn,a) (190l + 2@ H [ [ol V0l + 2k(0) H ol
< K40, q) (19l + 2H) H Vol ol + 2750 H ol

It is elementary to see that this implies [¢[|2 < (1 4 €)2K%(n, q) [(1 +6)[[Vel|2 + A(e)ngHg},
from which the conclusion follows.
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For the existence of such h;, one cover M by balls B(Q;,d) using Lemma m Denote by
@i : B(Q;,0) — B(0,0) the inverse of exponential maps and let u : R — R be the smooth
function, choose u to be a bell curve with maximal value 1 at 0, supported in B(0,¢) and u < %
in B(0,6/2) and pose u; = u o ¢;. Then

VUil < Cigar, 0)|Vulle = Calgar, 6)

Pose h; = iﬂ:;n with m > ¢ then
m_q
MO mu_ Vi +um/Q< ) LV( )
N PSR Sy
|VUJ|
< q.2- m/q Vil + - Z (2-m) 1+

< <2m/q + 2m(1+q)k:(5)> Cs(gar, 0) = const
q q

where k(9), as in Lemma [110], is the upper bound of number of balls overlapping at the point
in question. ]

9.5 Kondrachov’s theorem

The generalised version of Kondrachov’s theorem is much easier to prove

Theorem 117 (Kondrachov). Theorem[99 holds when one replaces Q by a compact Riemannian
manifolds of dimension n.

Proof. Cover M by finitely many small geodesic ball B(Q;,d) subordinating a partition of
unity SN, x; = 1, then if a sequence {u,}, C W*?is bounded then {x;u,}, is also bounded
in W*4 The conclusion follows using Remark |43 and the Euclidean version of Kondrachov’s
theorem. [

9.6 Solving Au = f on a Riemannian manifold.

With Kondrachov’s theorem 117, one can uses the familiar "subsequence extracting' technique
to find a minimiser of the quadratic functional ¢ — 1 [,,[[V4[|*dV in a suitable subspace of
Wh2(M) (method of Lagrange multiplier), one can prove the following results.

Theorem 118 (Spectrum of A). Let M™ be a compact Riemannian manifold then

1. The eigenvalues of A — V'V, are > 0.
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2. The eigenfunctions of 69 = 0 are constant functions.

3. The eigenvalue Ay is the minimum value of the functional

1
v s [ Iveltav

on the subspace {p € WYA(M) : ||¢]la =1, [¥dV = 0}. Moreover, first eigenfunctions
are smooth.

Theorem 119. Given M™ be a compact Riemannian manifold, consider the Laplace equation
on M:

Au=f (9.12)
where f € L*(M), then:

1. There exists u € WY2(M) satisfying (9.12)) in the weak sense if and only if [y, fdV =0
2. u is unique up to an additive constant.

3. If f € C™™ then u € CT+2<,
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Chapter 10

Parametrix and Green’s function of
Laplacian operator on Riemannian
manifolds

Recall that in the Euclidean space R™, one obtains a representation of the solution u of equation
Au = f by

o first solving for an explicit radial solution of AG = dy. In particular, G = [(n —
2wy ] trP v ifn > 2 and G = —(27) ' log(r) if n = 2

o then tensoring G by f, one has the solution u = G * f of Au = f

To generalise this argument for Riemannian manifolds, there are a few points that have to
be modified:

1. Since it does not make sense to add/substract points of a manifold, one will need to find
different fundamental solutions for different points, so instead of fundamental solution,
we will find the Green’s function G = G(p, q)(p,q € M). The convolution will be replace
by the following operation on functions X, Y defined on (M x M)\ A where Ay, denotes
the diagonal:

(X+Y)(pg) = [ X(p.r)Y(r.q)dV(r)

2. The distance function ¢ — d(p,q) is only smooth near p, outside of the cut-locus, the
best one can says is that the function is Lipschitz. Since cut-loci are almost impossible
to calculate or visualise (the cut-locus of an ellipsoid is still a conjecture, according to
[Ber03]), one will cut-off the Euclidean solution, try to solve the equation near p and later
add a correcting term. This inspires the definition of parametrix.
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3. Another reason that we have to approximate the exact solution by parametrix, that
also explain the iteration in Theorem [122] is that the expression of Laplacian, even in
the geodesic polar coordinate and even near the origin, involves the metric, hence the
Euclidean fundamental solution is not yet a solution even near the origin.

Remark 46. To give a simplified analogy of what we will be doing, let us prove the existence
of "Green’s function" on Riemann surfaces (with boundary, so that we do not have to deal with
the volume). The "Laplace equation” is

— 2i0dg = & (10.1)

where the LHS is a 2-form and the RHS is a generalised 2-form in the sense of current.
Contrary to the previous point 3, one knows the exact local solution of (10.1), namely z
—(27) " og(|z]). Therefore, the argument will be simplified as:

o Given a holomorphic chart of a point 0 € M, pose h(z) := —(2m) tlog(|z|)x(|z]) where
X 1s a cut-off function that is 1 on a neighborhood of 0

e The 2-form a = —2id0h is well-defined everywhere except 0, and vanishes on a neighbor-
hood of 0. Denote by o™ its extension to M.

e Recall the fact that every smooth 2-form on a compact, connected, Riemann surface with

naiv

boundary can be writen as o™ = —2id0¢, pose g = h — .

For Riemann surface without boundary, the equation is —2i00g = & — 2i [,; 00g and the
fact to evoke is that any smooth 2-form o with [,; o =0 is of form o = —2i00¢

We will suppose that M" is a Riemannian manifold with injectivity radius dg > 0, and of
bounded curvature. Compact manifolds, for example, fall in this category.

10.1 Parametrix and the Green’s formula

Definition 19. A Green’s function G(p,q) of a compact Riemannian manifold is a function
defined on (M x M)\ Ay such that

1. ATSG(p, q) = 0p(q) if M has boundary.
2. AFG(p,q) = dy(q) = V!

where Agi“ concerns the distribution derivatives and V' is the volume of M.
Let p,q € M be distinct points, the parametrixz H is defined by

) ln = w1 2 (r), ifn>2
)= {—(27T)‘1X(7") log 7, ifn =2

where v = d(p,q), X : Rsg — R is smooth, x = 1 in a neighborhood of 0 and x(t) = 0 if
t > 50.
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10.1. PARAMETRIX AND THE GREEN’S FORMULA

Recall that in the geodesic polar coordinates, i.e. the polar coordinates on the tangent 7, M
at p € M, identified with a neighborhood of p € M, the metric g is given by

g :ds® =dr* +1%gg, (r,0)d6"d6’
and one denotes |gs| := det(gg,g, ), therefore |g| = det(g;;) = r*"=V|gy|

Lemma 120. If a function ¢ € C? defined locally around p € M and ¢ is radial, i.e. ¢ = f(r)
in a small geodesic ball B(p,d) then

~Bp =4 T 4 0 0g ol
Proof. One has
Ap = =T (Vi(g" 00 ex)),, = ~0:(970j) — g 0jTix
= —|g|720i(g" |g]"*0;0)

since T, = O log+/|g| = 82i||gg||. One concludes by substituting |g| = 7?"72|gy| and noticing that

g% =g%% =0 (i #j). o

Remark 47. 1. The Laplacian of the metric g, viewed in polar geodesic coordinates centered

at p, i.e. in the tangent space T,M is not the Fuclidean Laplacian of T, M, however the

difference if O(r) since 0,log/|ge| < Ar where the bound A is given by Ricci curvature,
see the Volume comparison theorem,.

2. Applied the formula for g — H(p,q), one has

AT H (p. ) = [(n = Dt (0= 3 ="+ (0 = 2)x = 1)), og /Il
(10.2)
therefore AYVH (p, q) < Br?*=" where B does not depend on p.

3. Unlike the case of Remark [46] where we know the exact fundamental solution and the
form o™V has no singularity, there is no reason for that this holds true for AgaivH (p,q).
However, we proved that the order of singularity at ¢ = p can be controlled.

Proposition 121 (Green’s formula). For any function ¢ € C*(M), one has

o) = [ Hp.0rv@dV(9) - [ AP HEp gvladV(9) (103)

where AgaivH(p, q) denotes the pointwise derivative of H(p,q), not the distribution derivative.

Remark 48. 1. In other words, the theorem says that AgiStH(p, q) = A¥VH(p,q) + 6,(q)
where Agi“ is the distribution derivative. In particular, if there is no concern about
reqularity of the distance function d(p,q) (as in the Fuclidean case), allowing us to take
the cut-off function x = 1 in the definition of parametriz, then Agai"H(p, q) = 0 and
AgiStH(p, q) = 0,(q) which is not a surprise since H(p,q) is also the Green’s function.
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2. Taking v = 1, one has
[, A H () = -1

3. Multiplying (10.3)) by ¢(p) and integrate over M, one has

| o@v@av@ = [ ([ Heaswave) sv@av@-[ ([ s a0 ) v@ivo

hence in distribution sense

dlq) = Ag /M H(p,q)¢(p)dV (p) — /M AMYH(p, q)o(p) (10.4)

The equation (10.4)) is called the transposition of equation (10.3) and what we have just
done is a rigourous proof of the following heuristic justification of (10.4): "Take the
derivative A, inside the integral, then use [y, 0,(q)o(p)dV (p) "="¢(q) "

Proof. The intuition is clear:

» since one only modifies the fundamental solution at points ¢ far from p, one only needs
to recompense by AV H (p, q)

o there may be trouble near p caused by the difference between the Euclidean Laplacian
and the metric Laplacian, however as explained by Remark [47] this difference is O(r) as
r — 0.

For a rigorous proof, one calculates [y, H(p, q)Av(q)dV (q) by decomposing M to B(p,e€) and
M \ B(p,e€) with 0 < € < dp tending to 0 eventually, then

/M\B(p B H(p.9)Ap(g)dV (q) = /M\B(p 9 (AgaivH(n q)¥(q) +d(p ANxdH — H A *dzﬁ)) dV(q)

— AP T (. dV(q) + AsdH — H A sdip)dV
e (p, Q)Y (q)dV (q) 83(%6)(?& V)dV(q)

by Stokes’ theorem, where * denotes the Hodge star. Therefore

| H. A0 @aV(e) = [ AP Hp, gwldV (@) + L+ 1o

where [} = limeo [yp(.e) (¥ A *dH — H A xdyp) and Iy = lime o [p(, o H(p, 9)AY(q)dV (q)-
Now I, = 9(p) since (21 < qv/dE < (@)= in B(p,e) by Volume comparison
theorem where b* is an upper bound of sectional curvature and (n — 1)a? is a lower bound

of Ricci curvature (o € C), and since AY(q) — Agtp(q) = O(e) in B(p,€) where Ag is the
Euclidean Laplacian.
For I;, with € small enough such that xy = 1, one has |H A *xdy| < const €2 (xdy)). By
straightforward computation:
dH = —w, 7t "dr,  dV =7r"""/|goldr AdO* A --- A O™

*dH = —w, 17" /| go|ld0* A -+ A dO™!
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10.2. EXISTENCE OF GREEN’S FUNCTION ON COMPACT RIEMANNIAN MANIFOLDS /¢

hence [yp(,o H A *dip = O(e) and [opq, 0% A *dH = O(e*"72). Therefore I, = 0 and the
conclusion follows. n

10.2 Existence of Green’s function on compact Rieman-
nian manifolds
Our goal is to prove the following theorem

Theorem 122 (Existence of Green’s function). Let M™ be a compact Riemannian manifold
without boundary, there exists a Green’s function G(p,q) of the Laplacian such that

1. Green’s function. For all p € C*(M),

p(p) =V~ /M e(q)dV(q) + /M G(p, 9)Ap(q)dV(q) (10.5)

2. Smooth. G € C®°((M x M)\ Ap).
3. Radial estimates. There exists a constant k such that

Gp.q) < {k(l—i—]logr!), ifn=2 (10.6)

kr2=m, ifn>2
forr =d(p,q). Moreover, one has the derivative estimates:

V.Gp.q)| <kr' ™", |V2G(p,q)| < ki, (10.7)

4. G is bounded below. Since G is defined upto a constant, one can choose the constant so
that G > 0.

5. Constant integral. The integral [,; G(p,q)dV (p) is constant in q. Since G is defined upto
a constant, one can choose the constant so that [,; G(p,q)dV (p) = 0.

6. Symmetric. G(p,q) = G(q,p) for p # q in M.

For a better notation, let us replace A,U(p, q) by AU (p, q). Recall that we already know
how to solve the equation Au = f for f € L?*(M), this means we can solve AyU(p, q) = f,(q)
for double-integrable functions f,, or briefly we can solve L? functions. Now, define

(X+Y)(p.q) = [ X(p,)Y (rq)aV (1)
if the integration is possible and if it commutes with derivation, one has

AQ(FI *H) — Fl *AgiStH — Fl _'_Fl *AgaivH
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So if one can solve Fy x A™VH_ then one can solve Fy, i.e. if AyEy = F} * AJVH then take
E, := Fy x H— FE,, one has Ay F; = F.
Now in order to prove that o — V! can be solved, it remains to check that

Sa* (APVHY® € L2(M)  for k> 1. (10.8)
This is the content of the following lemma.

Lemma 123. Let 2 C R™ be a bounded open set, X,Y : (2 x Q)\ Aqg — R be continuous
functions such that

| X (p, q)| < constd(p,q)*™", Y (p. q)| < constd(p,q)’ ™, o, € (0,n)

then
Z(p,q) ::/QX(p,T)Y(T, q)dV (r)

is continuous in (2 x Q) \ Aq and

const d(p, q)*tP", ifa+8<n
|Z(p,q)| < { const(1+ |logd(p,q)|), ifa+B=n
const, ifa+p>n

In the case a+ B > n, Z admits a continuous extension to 2 X Q. The result also holds for
compact Riemannian manifolds.

Proof. 1t suffices to consider p,q closed to each other. Let d(p,q) = 2p. Decompose {2 =
(2N B(p,p)) U (w\ Blg,3p)) USLLN (B(q,3p) \ B(p,p)), then

/ X(p,r)Y (r,q)dV (r)| < Cp*tF
QNB(p,p)

X(p,r)Y (r,q)dV (r)| < Cp*"

/QﬂB (2,:3p)\B(p,p)

D dr
[ XYoo |
Q\B(q,3p) P

yn—a—B—1

where D is the diameter of 2. For compact Riemannian manifold, take p < dp, the injectivity
radius and use Comparison theorem, one has the same estimates. O

Back to the proof of Theorem (122} one can see that it suffices to choose & > % in (10.8)).
The rigorous proof is given below.

Proof of Theorem ref:thm:existence-green. Carefully do the algebraic part of the above argu-

ment, one poses
k-1

G(p.q) = H(p,q) + Y _(=APH)" « H + Fy(p, q)

=1
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where Fy(p, q) satisfies
Asz(p, q> — (_ArzlalvH)*k o vfl

This is possible if one chooses k > n /2 since by repeated application of Lemma , (—ABaV )k
is continuous. By regularity result of equation Au = f, the function ¢ — Fj(p,q) is in
C?*(M \ {p}). Each function Fy(p,-) is uniquely defined up to a constant, choose the constant
such that [, G(p,q)dV(q) = 0, then the function p — [, Fx(p,q)dV (q) is continuous. The
condition 1) of the Theorem can be verified without difficulty. Moreover, since AsG(p,q) = 0
if ¢ # p, the function ¢ — G(p, q) is C*°.

We will prove such G(p, q) satisfies the statements 2-6, starting from a weaker form 2-) of
2), that is we will prove that p — G(p, ¢) is continuous, then using this, we will prove 3-6, and
eventually come back to prove 2 completely.

For 2-) we will use the following fact:

Fact. If Au = f and f € C°(M) (hence u € C*(M) and [,; u = 0, then one has sup |u| <
C'sup | f| where C' > 0 is a constant.

Denote I'; := (—A3VH)* and apply the result for u = F(p,-) — V=1 [, F(p,q)dV (q) and
f=Tk(p,-), one has

sup|F(p,) = F(r,) =V [ (F(p,) = F(r,))| < Csup[Dulp.q) = Tu(r: )

Then the continuity of p — F(p,-) under C° topology is given by

e p— [y F(p,-) is continuous by the previous choice of constant.

o The uniform continuity of I'y on M x M, which is the result of its continuity and the
compactness of M x M.

Hence p — G(p, q) is continuous on M \ {¢} for all ¢ € M.

For 3), fix p € M and let r = d(p,q) be small, then H(p,q) = O(r*", (T; x H)(p,q) =
O(r?*2=") by Lemma and F(p,q) = O(1) if n > 2. Hence G(p,q) = O(r*~"), where here
the constant in O(r?>~"), if checked carefully, does not depend on p. The case n = 2 can be
treated similarly. For the derivative estimates, note that V,G(p,q) = V,H(p,q) + S i} (T *
VoH)(p, q) + V4F(p, q) and VoG(p,q) = ViH(p, q) + i (T % V3H)(p, q) + Vo F(p, q) where
the commutative of derivation and integration can be justified by Lebesgue’s Dominated con-
vergence. In both case, the dominant terms as ¢ — p are V,H(p, ¢) and VgH (p, q) respectively,
which is O(r'™™) and O(r~™) where the constants in big-O do not depend on p.

For 4), note that H(p, q) is the dominant term of G(p, q) as ¢ — p and H(p,q) > 0, one see
that G(p,q) > 0 in a neighborhood of A,;. By the compactness of M and the continuity of G
outside of A,/, one sees that G is bounded below.

To prove 5), take to transposition of (10.]), i.e. multiply by ¢(p) and integrate, as in
Remark [48], one obtains

A, [ Gl e@aV () = vi@) -V [ vm)ave) (109)
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Substitute ¢ = 1, one sees that ¢ — [, G(p, q)dV (p) is harmonic on M, hence is constant by
compactness of M.
We will now prove 6). It follows from (10.5)) that

A, [ Gl ae(dV (@) = Agila) (10.10)

Also, from the transposition ((10.9)), replace ¢ by A1, one has

A, [ Goadp)aV (p) = Au(g)

Swap p and ¢ and subtract to (|10.10]), one has

a, [ (@ 9)) A(q)dV () =0

Hence [, (G(p,q) — G(q,p)) A(q) = C const. Integrate by p € M and use the fact that we
chose [,; G(¢,p)dV (p) = 0, one has C' = 0, meaning that A, (G(p,q) — G(q,p)) = C(p), being
independent of q. By swapping p, ¢, one has C(p) = —C(q ) for all p # ¢. Since M contains
more than 3 points, these constants are 0. Hence G(p,q) = G(q,p).

Now coming back to 2), since G(p,q) = G(q,p), we see that p — G(p,q) is C* for all
q € M. It remains to prove that p — V!G(p,q) is continuous on M \ {g}, then Schwarz’s
lemma applies. For that, one may try the following argument:

ANV G(p,q) = VIAG(p.q) =0, pe M\ [q}

hence p — VgG (p,q) is C*. It is however difficult to justify the commutativity of derivations,
which is equivalent to

/M ViG(p, q)Ap(p)dV (p) = V} /M G(p,q)Ap(p)dV (p), (10.11)

that is the ability to derive in the integral sign. A justification for this can be done in the case
h < 2 using estimates of 3).

A simpler way is to note that it suffices to prove the continuity of p — VZG (p,q) for pin a
small open set V' with V not containing q. Then claim that APVZG(p, q) = V,A,G(p,q) =0 as
distributions on V', which is equivalent to for all test functions ¢ with supp ¢ € V. Then
Dominated convergence applies since [V**1G(p, q)| < Cd(q, V)' =" hence is bounded. O

136/[137



Bibliography

[Aub9g]

[Ber03]

[CG75]

[ES64]

[GORT73]

[Ham75]

[Jos08]

[SUS1]

Thierry Aubin. Some Nonlinear Problems in Riemannian Geometry. Springer Mono-
graphs in Mathematics. Springer-Verlag, Berlin Heidelberg, 1998.

Marcel Berger. A Panoramic View of Riemannian Geometry. Springer Berlin Hei-
delberg, 2003.

Shiing-shen Chern and Samuel I. Goldberg. On the Volume Decreasing Property of a
Class of Real Harmonic Mappings. American Journal of Mathematics, 97(1):133-147,
1975.

James FEells and J. H. Sampson. Harmonic Mappings of Riemannian Manifolds.
American Journal of Mathematics, 86(1):109-160, 1964.

R. D. Gulliver, R. Osserman, and H. L. Royden. A Theory of Branched Immersions
of Surfaces. American Journal of Mathematics, 95(4):750-812, 1973.

R. S. Hamilton. Harmonic Maps of Manifolds with Boundary. Lecture Notes in
Mathematics. Springer-Verlag, Berlin Heidelberg, 1975.

Jirgen Jost. Riemannian Geometry and Geometric Analysis. Universitext. Springer-
Verlag, Berlin Heidelberg, 5 edition, 2008.

J. Sacks and K. Uhlenbeck. The Existence of Minimal Immersions of 2-Spheres.
Annals of Mathematics, 113(1):1-24, 1981.

13737



	Summary
	Summary
	Deformation using nonlinear heat equation.
	Existence using Morse-Palais-Smale theory.


	I Harmonic maps: Introduction
	Harmonic maps of Riemannian manifolds
	Harmonic maps
	Variational approach: energy integral and tension field
	Formulation using connection on vector bundle
	The case of E = f* TM'
	Example: Riemannian immersion
	Composition of maps

	Nonlinear heat flow: Global equation and existence of harmonic maps.
	Statement of the main results.
	Strategy of the proof.
	Global equation and Uniqueness of nonlinear heat equation.

	A few energy estimates.
	Estimate of density energies
	Estimate of total energies



	II Resolution of nonlinear heat equation on manifold
	Short-time existence and regularity for nonlinear heat equation
	Review of Sobolev spaces and Linear equations.
	Sobolev spaces.
	Trace theorem.
	Linear equations on manifolds.

	Regularity estimate of the quadratic term.
	Regularity for nonlinear heat equation.
	Short-time existence for nonlinear heat equation.

	Global existence for nonlinear heat equation
	Estimate of higher derivatives.
	Global existence for nonlinear heat equation.


	III Existence using Morse-Palais-Smale theory
	Minimal immersions of S2
	Brief view of Sacks and Uhlenbeck's strategy.
	General machinery by Morse-Palais-Smale.
	Perturbed functionals E.
	Tubular neighborhood of the submanifold of trivial maps.
	Critical values of E.

	Local results: Estimates and extension.
	Convergence of critical maps of E.
	Nontrivial harmonic maps from S2.
	Minimal immersions of S2.


	IV Appendix 1: Resolution of linear equations on manifold
	Interpolation theory and Sobolev spaces on compact manifolds 
	Motivation
	Preparatory material
	Stein's multiplier
	Holomorphic interpolation of Banach spaces

	Sobolev spaces on compact manifold without boundary
	Sobolev spaces on compact manifold with boundary
	Sobolev spaces on half-plan
	Trace theorems
	Trace operator on manifold


	Elliptic and parabolic equations on compact manifolds
	Commutative diagram and linear PDE. Example: Semi-elliptic equation on Rn
	Elliptic equation on half-plan XY+. Boundary conditions.
	From local to global.
	Pertubation of exact squares and consequences.
	Consequences of Theorem 72.

	Parabolic equation on manifold.
	Parabolicity and local results.
	Global results and causality. 
	Regularisation effect and Gårding inequality.

	Example: Linear heat equation.
	Linear system.
	Maximum principle and L-Comparison theorem.
	Backwards heat equation and L1-Comparison theorem.



	V Appendix 2: Besov spaces and Polynomial differential operators
	Regularity estimate of Polynomial differential operators
	A regularity estimate for polynomial differential operator.
	Review of Besov spaces Bs,p.
	Proof of the local estimate.


	VI Appendix 3: Parametrix and Linear equations
	Sobolev spaces on Riemannian manifolds
	Quick recall of Jacobi fields, Index inequality
	Local comparison with space forms
	Some covering lemmas
	Sobolev imbeddings for Riemannian manifolds
	Kondrachov's theorem
	Solving u = f on a Riemannian manifold.

	Parametrix and Green's function
	Parametrix and the Green's formula
	Existence of Green's function on compact Riemannian manifolds



